回到几乎利玛窦的孤立

IF 0.4 Q4 MATHEMATICS
V. Rovenski, S. Stepanov, I. Tsyganok
{"title":"回到几乎利玛窦的孤立","authors":"V. Rovenski, S. Stepanov, I. Tsyganok","doi":"10.36890/iejg.1223973","DOIUrl":null,"url":null,"abstract":"In the paper, we study complete almost Ricci solitons using the concepts and methods of geometric dynamics and geometric analysis. In particular, we characterize Einstein manifolds in the class of complete almost Ricci solitons.\nThen, we examine compact almost Ricci solitons using the orthogonal expansion of the Ricci tensor, this allows us to substantiate the concept of almost Ricci solitons.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Back to Almost Ricci Solitons\",\"authors\":\"V. Rovenski, S. Stepanov, I. Tsyganok\",\"doi\":\"10.36890/iejg.1223973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we study complete almost Ricci solitons using the concepts and methods of geometric dynamics and geometric analysis. In particular, we characterize Einstein manifolds in the class of complete almost Ricci solitons.\\nThen, we examine compact almost Ricci solitons using the orthogonal expansion of the Ricci tensor, this allows us to substantiate the concept of almost Ricci solitons.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1223973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1223973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文运用几何动力学和几何分析的概念和方法,研究了完备的几乎里奇孤子。特别地,我们在完全几乎里奇孤子类中描述爱因斯坦流形。然后,我们使用里奇张量的正交展开来检验紧致几乎里奇孤子,这允许我们证实几乎里奇孤子的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Back to Almost Ricci Solitons
In the paper, we study complete almost Ricci solitons using the concepts and methods of geometric dynamics and geometric analysis. In particular, we characterize Einstein manifolds in the class of complete almost Ricci solitons. Then, we examine compact almost Ricci solitons using the orthogonal expansion of the Ricci tensor, this allows us to substantiate the concept of almost Ricci solitons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信