使用mathematica自动向量空间证明

IF 0.4 Q4 MATHEMATICS, APPLIED
Aaron E. Naiman
{"title":"使用mathematica自动向量空间证明","authors":"Aaron E. Naiman","doi":"10.1145/3572865.3572866","DOIUrl":null,"url":null,"abstract":"We present Mathematica tools for proving or disproving whether a set of objects constitutes a vector space. When necessary axioms are upheld, the relationships between the variables are presented. When the axioms fail, intuitive counterexamples are shown. A number of different kinds of vectors are demonstrated, with varying types of vector addition and scalar multiplication as well. All of the calculations are performed in an automated fashion.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"56 1","pages":"1 - 13"},"PeriodicalIF":0.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated vector space proofs using mathematica\",\"authors\":\"Aaron E. Naiman\",\"doi\":\"10.1145/3572865.3572866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Mathematica tools for proving or disproving whether a set of objects constitutes a vector space. When necessary axioms are upheld, the relationships between the variables are presented. When the axioms fail, intuitive counterexamples are shown. A number of different kinds of vectors are demonstrated, with varying types of vector addition and scalar multiplication as well. All of the calculations are performed in an automated fashion.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"56 1\",\"pages\":\"1 - 13\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572865.3572866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572865.3572866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了Mathematica工具来证明或反驳一组对象是否构成向量空间。当必要的公理得到支持时,变量之间的关系就会呈现出来。当公理失效时,直观的反例被展示出来。演示了许多不同类型的向量,以及不同类型的向量加法和标量乘法。所有的计算都以自动化的方式进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated vector space proofs using mathematica
We present Mathematica tools for proving or disproving whether a set of objects constitutes a vector space. When necessary axioms are upheld, the relationships between the variables are presented. When the axioms fail, intuitive counterexamples are shown. A number of different kinds of vectors are demonstrated, with varying types of vector addition and scalar multiplication as well. All of the calculations are performed in an automated fashion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信