余维1全纯叶的Lehmann-Suwa残数及其应用

IF 0.5 4区 数学 Q3 MATHEMATICS
A. Fern'andez-P'erez, J. Tamara
{"title":"余维1全纯叶的Lehmann-Suwa残数及其应用","authors":"A. Fern'andez-P'erez, J. Tamara","doi":"10.4310/AJM.2020.V24.N4.A6","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{F}$ be a singular codimension one holomorphic foliation on a compact complex manifold $X$ of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of $\\mathcal{F}$ as multiples of complex numbers by integration currents along irreducible complex subvarieties of $X$. We then prove a formula that determines the Baum-Bott residue of simple almost Liouvillian foliations of codimension one, in terms of Lehmann-Suwa residues, generalizing a result of Marco Brunella. As an application, we give sufficient conditions for the existence of dicritical singularities of a singular real-analytic Levi-flat hypersurface $M\\subset X$ tangent to $\\mathcal{F}$.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lehmann–Suwa residues of codimension one holomorphic foliations and applications\",\"authors\":\"A. Fern'andez-P'erez, J. Tamara\",\"doi\":\"10.4310/AJM.2020.V24.N4.A6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{F}$ be a singular codimension one holomorphic foliation on a compact complex manifold $X$ of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of $\\\\mathcal{F}$ as multiples of complex numbers by integration currents along irreducible complex subvarieties of $X$. We then prove a formula that determines the Baum-Bott residue of simple almost Liouvillian foliations of codimension one, in terms of Lehmann-Suwa residues, generalizing a result of Marco Brunella. As an application, we give sufficient conditions for the existence of dicritical singularities of a singular real-analytic Levi-flat hypersurface $M\\\\subset X$ tangent to $\\\\mathcal{F}$.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/AJM.2020.V24.N4.A6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/AJM.2020.V24.N4.A6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$\mathcal{F}$是维数至少为3的紧致复流形$X$上的一个奇异余维数为1的全纯叶理,使得其奇异集的余维数至少为2。在本文中,我们通过沿着$X$的不可约复子群的积分流,将$\mathcal{F}$的Lehmann-Suwa残数确定为复数的倍数。然后,我们用Lehmann-Suwa残基证明了一个确定余维1的简单几乎刘维叶理的Baum-Bott残基的公式,推广了Marco Brunella的一个结果。作为一个应用,我们给出了与$\mathcal{F}$相切的奇异实解析Levi平坦超曲面$M\subet X$存在双临界奇点的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lehmann–Suwa residues of codimension one holomorphic foliations and applications
Let $\mathcal{F}$ be a singular codimension one holomorphic foliation on a compact complex manifold $X$ of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of $\mathcal{F}$ as multiples of complex numbers by integration currents along irreducible complex subvarieties of $X$. We then prove a formula that determines the Baum-Bott residue of simple almost Liouvillian foliations of codimension one, in terms of Lehmann-Suwa residues, generalizing a result of Marco Brunella. As an application, we give sufficient conditions for the existence of dicritical singularities of a singular real-analytic Levi-flat hypersurface $M\subset X$ tangent to $\mathcal{F}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信