一维六方压电准晶复合材料热效应的应力奇异性

IF 2.6 3区 工程技术 Q2 MECHANICS
Xiang Mu, Xiaoyu Fu, Z. Zhu, Liangliang Zhang, Yang Gao
{"title":"一维六方压电准晶复合材料热效应的应力奇异性","authors":"Xiang Mu, Xiaoyu Fu, Z. Zhu, Liangliang Zhang, Yang Gao","doi":"10.1080/01495739.2023.2221313","DOIUrl":null,"url":null,"abstract":"Abstract In the framework of thermo-electro-elasticity, the present paper investigates the singular behaviors of interface corners, interface cracks, composite wedges and spaces for one-dimensional hexagonal quasicrystal. The stress function and temperature variation can be described as the exponential form with a view to stress and heat flux singularities. Based on the Stroh formalism, the analytical expressions of singular orders of stress and heat flux are easily established by simple multiplication of the crucial matrix. Numerical examples of the singular orders are given for some general cases including single, bi-material, and tri-material wedges and spaces under different boundary conditions. Numerical results show that the geometry structures, material properties, boundary conditions, and heat conduction coefficients have great influences on singularities, but thermal moduli have no effect on singularities.","PeriodicalId":54759,"journal":{"name":"Journal of Thermal Stresses","volume":"46 1","pages":"1066 - 1083"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress singularity of one-dimensional hexagonal piezoelectric quasicrystal composites due to thermal effect\",\"authors\":\"Xiang Mu, Xiaoyu Fu, Z. Zhu, Liangliang Zhang, Yang Gao\",\"doi\":\"10.1080/01495739.2023.2221313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the framework of thermo-electro-elasticity, the present paper investigates the singular behaviors of interface corners, interface cracks, composite wedges and spaces for one-dimensional hexagonal quasicrystal. The stress function and temperature variation can be described as the exponential form with a view to stress and heat flux singularities. Based on the Stroh formalism, the analytical expressions of singular orders of stress and heat flux are easily established by simple multiplication of the crucial matrix. Numerical examples of the singular orders are given for some general cases including single, bi-material, and tri-material wedges and spaces under different boundary conditions. Numerical results show that the geometry structures, material properties, boundary conditions, and heat conduction coefficients have great influences on singularities, but thermal moduli have no effect on singularities.\",\"PeriodicalId\":54759,\"journal\":{\"name\":\"Journal of Thermal Stresses\",\"volume\":\"46 1\",\"pages\":\"1066 - 1083\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Stresses\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/01495739.2023.2221313\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Stresses","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01495739.2023.2221313","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在热电弹性的框架下,研究了一维六边形准晶体的界面角、界面裂纹、复合楔和空间的奇异行为。考虑到应力和热流的奇异性,应力函数和温度变化可以用指数形式来描述。基于Stroh的形式,通过对关键矩阵的简单乘法,可以很容易地建立应力和热流的奇异阶解析表达式。在不同的边界条件下,给出了单材料、双材料和三材料楔形和空间奇异阶的数值例子。数值结果表明,几何结构、材料性质、边界条件和热传导系数对奇异性有较大影响,而热模量对奇异性没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stress singularity of one-dimensional hexagonal piezoelectric quasicrystal composites due to thermal effect
Abstract In the framework of thermo-electro-elasticity, the present paper investigates the singular behaviors of interface corners, interface cracks, composite wedges and spaces for one-dimensional hexagonal quasicrystal. The stress function and temperature variation can be described as the exponential form with a view to stress and heat flux singularities. Based on the Stroh formalism, the analytical expressions of singular orders of stress and heat flux are easily established by simple multiplication of the crucial matrix. Numerical examples of the singular orders are given for some general cases including single, bi-material, and tri-material wedges and spaces under different boundary conditions. Numerical results show that the geometry structures, material properties, boundary conditions, and heat conduction coefficients have great influences on singularities, but thermal moduli have no effect on singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermal Stresses
Journal of Thermal Stresses 工程技术-力学
CiteScore
5.20
自引率
7.10%
发文量
58
审稿时长
3 months
期刊介绍: The first international journal devoted exclusively to the subject, Journal of Thermal Stresses publishes refereed articles on the theoretical and industrial applications of thermal stresses. Intended as a forum for those engaged in analytic as well as experimental research, this monthly journal includes papers on mathematical and practical applications. Emphasis is placed on new developments in thermoelasticity, thermoplasticity, and theory and applications of thermal stresses. Papers on experimental methods and on numerical methods, including finite element methods, are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信