一类介于Devaney混沌和Li—Yorke混沌的广义位移动力系统

IF 0.5 Q3 MATHEMATICS
F. A. Z. Shirazi, Fatemeh Ebrahimifar, Maryam Hagh Jooyan, A. Hosseini
{"title":"一类介于Devaney混沌和Li—Yorke混沌的广义位移动力系统","authors":"F. A. Z. Shirazi, Fatemeh Ebrahimifar, Maryam Hagh Jooyan, A. Hosseini","doi":"10.47836/mjms.16.3.11","DOIUrl":null,"url":null,"abstract":"In the following text, for finite discrete X with at least two elements, nonempty countable Γ, and φ:Γ→Γ we prove the generalized shift dynamical system (XΓ,σφ) is densely chaotic if and only if φ:Γ→Γ does not have any (quasi--)periodic point. Hence the class of all densely chaotic generalized shifts on XΓ is intermediate between the class of all Devaney chaotic generalized shifts on XΓ and the class of all Li--Yorke chaotic generalized shifts on XΓ. In addition, these inclusions are proper for infinite countable Γ. Moreover we prove (XΓ,σφ) is Li--Yorke sensitive (resp. sensitive, strongly sensitive, asymptotic sensitive, syndetically sensitive, cofinitely sensitive, multi--sensitive, ergodically sensitive, spatiotemporally chaotic, Li--Yorke chaotic) if and only if φ:Γ→Γ has at least one non--quasi--periodic point.","PeriodicalId":43645,"journal":{"name":"Malaysian Journal of Mathematical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2017-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On A Class Between Devaney Chaotic and Li-Yorke Chaotic Generalized Shift Dynamical Systems\",\"authors\":\"F. A. Z. Shirazi, Fatemeh Ebrahimifar, Maryam Hagh Jooyan, A. Hosseini\",\"doi\":\"10.47836/mjms.16.3.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the following text, for finite discrete X with at least two elements, nonempty countable Γ, and φ:Γ→Γ we prove the generalized shift dynamical system (XΓ,σφ) is densely chaotic if and only if φ:Γ→Γ does not have any (quasi--)periodic point. Hence the class of all densely chaotic generalized shifts on XΓ is intermediate between the class of all Devaney chaotic generalized shifts on XΓ and the class of all Li--Yorke chaotic generalized shifts on XΓ. In addition, these inclusions are proper for infinite countable Γ. Moreover we prove (XΓ,σφ) is Li--Yorke sensitive (resp. sensitive, strongly sensitive, asymptotic sensitive, syndetically sensitive, cofinitely sensitive, multi--sensitive, ergodically sensitive, spatiotemporally chaotic, Li--Yorke chaotic) if and only if φ:Γ→Γ has at least one non--quasi--periodic point.\",\"PeriodicalId\":43645,\"journal\":{\"name\":\"Malaysian Journal of Mathematical Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/mjms.16.3.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/mjms.16.3.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在下文中,对于具有至少两个元素的有限离散X,非空可数Γ和φ:Γ→Γ证明了广义移位动力系统(XΓ,σφ)是稠密混沌的当且仅当φ:Γ→Γ不具有任何(拟-)周期点。因此,XΓ上的所有稠密混沌广义位移的类介于XΓ的所有Devaney混沌广义位移类和XΓ。此外,这些包含对于无限可数Γ是适当的。此外,我们证明了(XΓ,σφ)是李-约克敏感的(分别是敏感的,强敏感的,渐近敏感的,并合敏感的,共有限敏感的,多敏感的,遍历敏感的,时空混沌的,李-约克混沌的)当且仅当φ:Γ→Γ至少有一个非拟周期点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On A Class Between Devaney Chaotic and Li-Yorke Chaotic Generalized Shift Dynamical Systems
In the following text, for finite discrete X with at least two elements, nonempty countable Γ, and φ:Γ→Γ we prove the generalized shift dynamical system (XΓ,σφ) is densely chaotic if and only if φ:Γ→Γ does not have any (quasi--)periodic point. Hence the class of all densely chaotic generalized shifts on XΓ is intermediate between the class of all Devaney chaotic generalized shifts on XΓ and the class of all Li--Yorke chaotic generalized shifts on XΓ. In addition, these inclusions are proper for infinite countable Γ. Moreover we prove (XΓ,σφ) is Li--Yorke sensitive (resp. sensitive, strongly sensitive, asymptotic sensitive, syndetically sensitive, cofinitely sensitive, multi--sensitive, ergodically sensitive, spatiotemporally chaotic, Li--Yorke chaotic) if and only if φ:Γ→Γ has at least one non--quasi--periodic point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
0
期刊介绍: The Research Bulletin of Institute for Mathematical Research (MathDigest) publishes light expository articles on mathematical sciences and research abstracts. It is published twice yearly by the Institute for Mathematical Research, Universiti Putra Malaysia. MathDigest is targeted at mathematically informed general readers on research of interest to the Institute. Articles are sought by invitation to the members, visitors and friends of the Institute. MathDigest also includes abstracts of thesis by postgraduate students of the Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信