大型办公室污染物空间分布的CFD研究

IF 0.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
N. Koutsourakis, J. Bartzis, G. Efthimiou, I. Sakellaris
{"title":"大型办公室污染物空间分布的CFD研究","authors":"N. Koutsourakis, J. Bartzis, G. Efthimiou, I. Sakellaris","doi":"10.1504/IJEP.2019.10023402","DOIUrl":null,"url":null,"abstract":"One of the goals of research on indoor air quality is the reduction of human exposure due to the dispersion of hazardous airborne materials. The purpose of this study is to analyse, by using computational fluid dynamics (CFD), the flow and the concentration patterns of floor-emitted pollutants inside a real, mechanically ventilated office of simple geometry. The simulation results show complex airflow and high heterogeneity of concentration distribution. Another objective of the study is to examine how alternative ventilation scenarios (vents' position and flow strength) could affect the human exposure in the same office. Furthermore, additional simulations and sensitivity tests are performed in order to discuss CFD reliability issues. Studies like this contribute to the determination of the parameters that influence the modelling results and prepare the ground for improved and more reliable future simulations of indoor pollutant dispersion.","PeriodicalId":14072,"journal":{"name":"International Journal of Environment and Pollution","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CFD studies of pollutant spatial distribution in a large office\",\"authors\":\"N. Koutsourakis, J. Bartzis, G. Efthimiou, I. Sakellaris\",\"doi\":\"10.1504/IJEP.2019.10023402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the goals of research on indoor air quality is the reduction of human exposure due to the dispersion of hazardous airborne materials. The purpose of this study is to analyse, by using computational fluid dynamics (CFD), the flow and the concentration patterns of floor-emitted pollutants inside a real, mechanically ventilated office of simple geometry. The simulation results show complex airflow and high heterogeneity of concentration distribution. Another objective of the study is to examine how alternative ventilation scenarios (vents' position and flow strength) could affect the human exposure in the same office. Furthermore, additional simulations and sensitivity tests are performed in order to discuss CFD reliability issues. Studies like this contribute to the determination of the parameters that influence the modelling results and prepare the ground for improved and more reliable future simulations of indoor pollutant dispersion.\",\"PeriodicalId\":14072,\"journal\":{\"name\":\"International Journal of Environment and Pollution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environment and Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1504/IJEP.2019.10023402\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environment and Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1504/IJEP.2019.10023402","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

室内空气质量研究的目标之一是减少由于有害空气传播物质的扩散而导致的人体暴露。本研究的目的是利用计算流体动力学(CFD)分析一个真实的、简单几何形状的机械通风办公室内地板排放污染物的流动和浓度模式。模拟结果表明气流复杂,浓度分布不均一性强。该研究的另一个目的是研究不同的通风方案(通风口的位置和气流强度)如何影响同一办公室的人体暴露。此外,还进行了额外的模拟和灵敏度测试,以讨论CFD的可靠性问题。这样的研究有助于确定影响模拟结果的参数,并为今后改进和更可靠的室内污染物扩散模拟奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD studies of pollutant spatial distribution in a large office
One of the goals of research on indoor air quality is the reduction of human exposure due to the dispersion of hazardous airborne materials. The purpose of this study is to analyse, by using computational fluid dynamics (CFD), the flow and the concentration patterns of floor-emitted pollutants inside a real, mechanically ventilated office of simple geometry. The simulation results show complex airflow and high heterogeneity of concentration distribution. Another objective of the study is to examine how alternative ventilation scenarios (vents' position and flow strength) could affect the human exposure in the same office. Furthermore, additional simulations and sensitivity tests are performed in order to discuss CFD reliability issues. Studies like this contribute to the determination of the parameters that influence the modelling results and prepare the ground for improved and more reliable future simulations of indoor pollutant dispersion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
3
审稿时长
4.5 months
期刊介绍: IJEP provides an international forum in the field of environment and pollution and addresses early and medium-term challenges involving scientific prediction, modelling and assessment. It focuses on ground-breaking research in the science of environmental pollution, at the early scientific stage. It is one of three key journals which together offer complete coverage of environmental issues: IJETM focuses on technical/engineering, policy and management solutions for environmental problems, and IJGEnvI focuses on future, longer-term environmental scenarios, ecological economics, climate change and biodiversity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信