Bhabha散射和K3表面的特殊铅笔

IF 1.2 3区 数学 Q1 MATHEMATICS
Dino Festi, D. Straten
{"title":"Bhabha散射和K3表面的特殊铅笔","authors":"Dino Festi, D. Straten","doi":"10.4310/CNTP.2019.V13.N2.A4","DOIUrl":null,"url":null,"abstract":"We study a pencil of K3 surfaces that appeared in the $2$-loop diagrams in Bhabha scattering. By analysing in detail the Picard lattice of the general and special members of the pencil, we identify the pencil with the celebrated Apery--Fermi pencil, that was related to Apery's proof of the irrationality of $\\zeta(3)$ through the work of F. Beukers, C. Peters and J. Stienstra. The same pencil appears miraculously in different and seemingly unrelated physical contexts.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Bhabha scattering and a special pencil of K3 surfaces\",\"authors\":\"Dino Festi, D. Straten\",\"doi\":\"10.4310/CNTP.2019.V13.N2.A4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a pencil of K3 surfaces that appeared in the $2$-loop diagrams in Bhabha scattering. By analysing in detail the Picard lattice of the general and special members of the pencil, we identify the pencil with the celebrated Apery--Fermi pencil, that was related to Apery's proof of the irrationality of $\\\\zeta(3)$ through the work of F. Beukers, C. Peters and J. Stienstra. The same pencil appears miraculously in different and seemingly unrelated physical contexts.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2019.V13.N2.A4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2019.V13.N2.A4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

摘要

我们研究了在Bhabha散射的$2$-环图中出现的K3曲面铅笔。通过对铅笔一般成员和特殊成员的皮卡德格的详细分析,我们将铅笔与著名的阿佩里-费米铅笔相识别,这与阿佩里通过F. Beukers, C. Peters和J. Stienstra的工作证明$\zeta(3)$的无理性有关。同样一支铅笔奇迹般地出现在不同的、看似不相关的物理环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bhabha scattering and a special pencil of K3 surfaces
We study a pencil of K3 surfaces that appeared in the $2$-loop diagrams in Bhabha scattering. By analysing in detail the Picard lattice of the general and special members of the pencil, we identify the pencil with the celebrated Apery--Fermi pencil, that was related to Apery's proof of the irrationality of $\zeta(3)$ through the work of F. Beukers, C. Peters and J. Stienstra. The same pencil appears miraculously in different and seemingly unrelated physical contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信