同志矩阵法在确定正交多项式GCD中的机械化

IF 0.3 Q4 MATHEMATICS
Siti Nor Asiah Isa, Nor'aini Aris, Shazirawati Mohd Puzi, Y. Hoe
{"title":"同志矩阵法在确定正交多项式GCD中的机械化","authors":"Siti Nor Asiah Isa, Nor'aini Aris, Shazirawati Mohd Puzi, Y. Hoe","doi":"10.11113/MATEMATIKA.V34.N3.1136","DOIUrl":null,"url":null,"abstract":"This paper revisits the comrade matrix approach in finding the greatest common divisor (GCD) of two orthogonal polynomials. The present work investigates on the applications of the QR decomposition with iterative refinement (QRIR) to solve certain systems of linear equations which is generated from the comrade matrix. Besides iterative refinement, an alternative approach of improving the conditioning behavior of the coefficient matrix by normalizing its columns is also considered. As expected the results reveal that QRIR is able to improve the solutions given by QR decomposition while the normalization of the matrix entries do improves the conditioning behavior of the coefficient matrix leading to a good approximate solutions of the GCD.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Mechanization of the Comrade Matrix Approach in Determining the GCD of Orthogonal Polynomials\",\"authors\":\"Siti Nor Asiah Isa, Nor'aini Aris, Shazirawati Mohd Puzi, Y. Hoe\",\"doi\":\"10.11113/MATEMATIKA.V34.N3.1136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper revisits the comrade matrix approach in finding the greatest common divisor (GCD) of two orthogonal polynomials. The present work investigates on the applications of the QR decomposition with iterative refinement (QRIR) to solve certain systems of linear equations which is generated from the comrade matrix. Besides iterative refinement, an alternative approach of improving the conditioning behavior of the coefficient matrix by normalizing its columns is also considered. As expected the results reveal that QRIR is able to improve the solutions given by QR decomposition while the normalization of the matrix entries do improves the conditioning behavior of the coefficient matrix leading to a good approximate solutions of the GCD.\",\"PeriodicalId\":43733,\"journal\":{\"name\":\"Matematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/MATEMATIKA.V34.N3.1136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V34.N3.1136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文重新讨论了求两个正交多项式的最大公约数的同志矩阵方法。本文研究了QR分解与迭代精化(QRIR)在求解由同志矩阵生成的某些线性方程组中的应用。除了迭代精化之外,还考虑了一种通过对系数矩阵的列进行归一化来改善其条件化行为的替代方法。正如预期的那样,结果表明QRIR能够改善QR分解给出的解,而矩阵项的归一化确实改善了系数矩阵的条件行为,从而导致GCD的良好近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Mechanization of the Comrade Matrix Approach in Determining the GCD of Orthogonal Polynomials
This paper revisits the comrade matrix approach in finding the greatest common divisor (GCD) of two orthogonal polynomials. The present work investigates on the applications of the QR decomposition with iterative refinement (QRIR) to solve certain systems of linear equations which is generated from the comrade matrix. Besides iterative refinement, an alternative approach of improving the conditioning behavior of the coefficient matrix by normalizing its columns is also considered. As expected the results reveal that QRIR is able to improve the solutions given by QR decomposition while the normalization of the matrix entries do improves the conditioning behavior of the coefficient matrix leading to a good approximate solutions of the GCD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信