{"title":"基于类壳曲线的关于对称点的λ-bi拟星形函数的子类","authors":"H. Güney, G. Murugusundaramoorthy, K. Vijaya","doi":"10.4067/s0719-06462021000200299","DOIUrl":null,"url":null,"abstract":"In this paper we define the subclass \\(\\mathcal{PSL}^\\lambda_{s,\\Sigma}(\\alpha,\\tilde{p}(z))\\) of the class \\(\\Sigma\\) of bi-univalent functions defined in the unit disk, called \\(\\lambda\\)-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients \\(|a_2|\\) and \\(|a_3|\\) for functions \\(f\\in\\mathcal{PSL}^\\lambda_{s,\\Sigma}(\\alpha,\\tilde{p}(z)).\\) Further we determine the Fekete-Szego result for the function class \\(\\mathcal{PSL}^\\lambda_{s,\\Sigma}(\\alpha,\\tilde{p}(z))\\) and for the special cases \\(\\alpha=0\\), \\(\\alpha=1\\) and \\(\\tau =-0.618\\) we state corollaries improving the initial Taylor-Maclaurin coefficients \\(|a_2|\\) and \\(|a_3|\\).","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Subclasses of λ-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves\",\"authors\":\"H. Güney, G. Murugusundaramoorthy, K. Vijaya\",\"doi\":\"10.4067/s0719-06462021000200299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we define the subclass \\\\(\\\\mathcal{PSL}^\\\\lambda_{s,\\\\Sigma}(\\\\alpha,\\\\tilde{p}(z))\\\\) of the class \\\\(\\\\Sigma\\\\) of bi-univalent functions defined in the unit disk, called \\\\(\\\\lambda\\\\)-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients \\\\(|a_2|\\\\) and \\\\(|a_3|\\\\) for functions \\\\(f\\\\in\\\\mathcal{PSL}^\\\\lambda_{s,\\\\Sigma}(\\\\alpha,\\\\tilde{p}(z)).\\\\) Further we determine the Fekete-Szego result for the function class \\\\(\\\\mathcal{PSL}^\\\\lambda_{s,\\\\Sigma}(\\\\alpha,\\\\tilde{p}(z))\\\\) and for the special cases \\\\(\\\\alpha=0\\\\), \\\\(\\\\alpha=1\\\\) and \\\\(\\\\tau =-0.618\\\\) we state corollaries improving the initial Taylor-Maclaurin coefficients \\\\(|a_2|\\\\) and \\\\(|a_3|\\\\).\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/s0719-06462021000200299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462021000200299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Subclasses of λ-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves
In this paper we define the subclass \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) of the class \(\Sigma\) of bi-univalent functions defined in the unit disk, called \(\lambda\)-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for functions \(f\in\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z)).\) Further we determine the Fekete-Szego result for the function class \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) and for the special cases \(\alpha=0\), \(\alpha=1\) and \(\tau =-0.618\) we state corollaries improving the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\).