基于类壳曲线的关于对称点的λ-bi拟星形函数的子类

IF 0.5 Q3 MATHEMATICS
H. Güney, G. Murugusundaramoorthy, K. Vijaya
{"title":"基于类壳曲线的关于对称点的λ-bi拟星形函数的子类","authors":"H. Güney, G. Murugusundaramoorthy, K. Vijaya","doi":"10.4067/s0719-06462021000200299","DOIUrl":null,"url":null,"abstract":"In this paper we define the subclass \\(\\mathcal{PSL}^\\lambda_{s,\\Sigma}(\\alpha,\\tilde{p}(z))\\) of the class \\(\\Sigma\\) of bi-univalent functions defined in the unit disk, called \\(\\lambda\\)-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients \\(|a_2|\\) and \\(|a_3|\\) for functions \\(f\\in\\mathcal{PSL}^\\lambda_{s,\\Sigma}(\\alpha,\\tilde{p}(z)).\\) Further we determine the Fekete-Szego result for the function class \\(\\mathcal{PSL}^\\lambda_{s,\\Sigma}(\\alpha,\\tilde{p}(z))\\) and for the special cases \\(\\alpha=0\\), \\(\\alpha=1\\) and \\(\\tau =-0.618\\) we state corollaries improving the initial Taylor-Maclaurin coefficients \\(|a_2|\\) and \\(|a_3|\\).","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Subclasses of λ-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves\",\"authors\":\"H. Güney, G. Murugusundaramoorthy, K. Vijaya\",\"doi\":\"10.4067/s0719-06462021000200299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we define the subclass \\\\(\\\\mathcal{PSL}^\\\\lambda_{s,\\\\Sigma}(\\\\alpha,\\\\tilde{p}(z))\\\\) of the class \\\\(\\\\Sigma\\\\) of bi-univalent functions defined in the unit disk, called \\\\(\\\\lambda\\\\)-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients \\\\(|a_2|\\\\) and \\\\(|a_3|\\\\) for functions \\\\(f\\\\in\\\\mathcal{PSL}^\\\\lambda_{s,\\\\Sigma}(\\\\alpha,\\\\tilde{p}(z)).\\\\) Further we determine the Fekete-Szego result for the function class \\\\(\\\\mathcal{PSL}^\\\\lambda_{s,\\\\Sigma}(\\\\alpha,\\\\tilde{p}(z))\\\\) and for the special cases \\\\(\\\\alpha=0\\\\), \\\\(\\\\alpha=1\\\\) and \\\\(\\\\tau =-0.618\\\\) we state corollaries improving the initial Taylor-Maclaurin coefficients \\\\(|a_2|\\\\) and \\\\(|a_3|\\\\).\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/s0719-06462021000200299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462021000200299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们定义了单位盘中定义的双单价函数类\(\ Sigma)的子类\(\mathcal{PSL}^\lambda_{s,\ Sigma}(\alpha,\ tilde{p}(z))\),称为\(\ lambda \)-bi伪星形,关于对称点,与Fibonacci数连接的类壳曲线有关。我们确定函数\(f\in\mathcal{PSL}^\lambda_{s,\ Sigma}(\alpha,\ tilde{p}(z))的初始Taylor-Maclaurin系数\(|a_2|\)和\(|a3|\)此外,我们确定了函数类\(\mathcal{PSL}^\lambda_{s,\ Sigma}(\alpha,\ tilde{p}(z))\)的Fekete-Szego结果,并且对于特殊情况\(\alpha=0\)、\(\aalpha=1\)和\(\tau=-0.618\),我们陈述了改进初始Taylor-Maclaurin系数\(|a_2|\)和/(|a_3|\)的推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subclasses of λ-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves
In this paper we define the subclass \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) of the class \(\Sigma\) of bi-univalent functions defined in the unit disk, called \(\lambda\)-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for functions \(f\in\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z)).\) Further we determine the Fekete-Szego result for the function class \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) and for the special cases \(\alpha=0\), \(\alpha=1\) and \(\tau =-0.618\) we state corollaries improving the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信