多重分形过程是否适合预测电价波动?来自澳大利亚盘中数据的证据

IF 0.7 4区 经济学 Q3 ECONOMICS
Mawuli Segnon, C. Lau, Bernd Wilfling, Rangan Gupta
{"title":"多重分形过程是否适合预测电价波动?来自澳大利亚盘中数据的证据","authors":"Mawuli Segnon, C. Lau, Bernd Wilfling, Rangan Gupta","doi":"10.1515/SNDE-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract We analyze Australian electricity price returns and find that they exhibit volatility clustering, long memory, structural breaks, and multifractality. Consequently, we let the return mean equation follow two alternative specifications, namely (i) a smooth transition autoregressive fractionally integrated moving average (STARFIMA) process, and (ii) a Markov-switching autoregressive fractionally integrated moving average (MSARFIMA) process. We specify volatility dynamics via a set of (i) short- and long-memory GARCH-type processes, (ii) Markov-switching (MS) GARCH-type processes, and (iii) a Markov-switching multifractal (MSM) process. Based on equal and superior predictive ability tests (using MSE and MAE loss functions), we compare the out-of-sample relative forecasting performance of the models. We find that the (multifractal) MSM volatility model keeps up with the conventional GARCH- and MSGARCH-type specifications. In particular, the MSM model outperforms the alternative specifications, when using the daily squared return as a proxy for latent volatility.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"26 1","pages":"73 - 98"},"PeriodicalIF":0.7000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/SNDE-2019-0009","citationCount":"0","resultStr":"{\"title\":\"Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data\",\"authors\":\"Mawuli Segnon, C. Lau, Bernd Wilfling, Rangan Gupta\",\"doi\":\"10.1515/SNDE-2019-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We analyze Australian electricity price returns and find that they exhibit volatility clustering, long memory, structural breaks, and multifractality. Consequently, we let the return mean equation follow two alternative specifications, namely (i) a smooth transition autoregressive fractionally integrated moving average (STARFIMA) process, and (ii) a Markov-switching autoregressive fractionally integrated moving average (MSARFIMA) process. We specify volatility dynamics via a set of (i) short- and long-memory GARCH-type processes, (ii) Markov-switching (MS) GARCH-type processes, and (iii) a Markov-switching multifractal (MSM) process. Based on equal and superior predictive ability tests (using MSE and MAE loss functions), we compare the out-of-sample relative forecasting performance of the models. We find that the (multifractal) MSM volatility model keeps up with the conventional GARCH- and MSGARCH-type specifications. In particular, the MSM model outperforms the alternative specifications, when using the daily squared return as a proxy for latent volatility.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\"26 1\",\"pages\":\"73 - 98\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/SNDE-2019-0009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/SNDE-2019-0009\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/SNDE-2019-0009","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们分析了澳大利亚电价回报,发现它们表现出波动性集群、长记忆、结构断裂和多重分形。因此,我们让回归均值方程遵循两个替代规范,即(i)平稳过渡自回归分数积分移动平均(STARFIMA)过程和(ii)马尔可夫切换自回归分数集成移动平均(MSARFIMA)进程。我们通过一组(i)短记忆和长记忆GARCH型过程,(ii)马尔可夫切换(MS)GARCH型进程,和(iii)马尔可夫切换多重分形(MSM)过程来指定波动性动力学。基于相等和优越的预测能力测试(使用MSE和MAE损失函数),我们比较了模型的样本外相对预测性能。我们发现(多重分形)MSM波动率模型符合传统的GARCH和MSGARCH型规范。特别是,当使用日平方收益率作为潜在波动率的代理时,MSM模型的表现优于其他规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data
Abstract We analyze Australian electricity price returns and find that they exhibit volatility clustering, long memory, structural breaks, and multifractality. Consequently, we let the return mean equation follow two alternative specifications, namely (i) a smooth transition autoregressive fractionally integrated moving average (STARFIMA) process, and (ii) a Markov-switching autoregressive fractionally integrated moving average (MSARFIMA) process. We specify volatility dynamics via a set of (i) short- and long-memory GARCH-type processes, (ii) Markov-switching (MS) GARCH-type processes, and (iii) a Markov-switching multifractal (MSM) process. Based on equal and superior predictive ability tests (using MSE and MAE loss functions), we compare the out-of-sample relative forecasting performance of the models. We find that the (multifractal) MSM volatility model keeps up with the conventional GARCH- and MSGARCH-type specifications. In particular, the MSM model outperforms the alternative specifications, when using the daily squared return as a proxy for latent volatility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信