拓扑等变coarsek -同调

IF 0.5 Q3 MATHEMATICS
U. Bunke, A. Engel
{"title":"拓扑等变coarsek -同调","authors":"U. Bunke, A. Engel","doi":"10.2140/akt.2023.8.141","DOIUrl":null,"url":null,"abstract":"For a $C^{*}$-category with a strict $G$-action we construct examples of equivariant coarse homology theories. To this end we first introduce versions of Roe categories of objects in $C^{*}$-categories which are controlled over bornological coarse spaces, and then apply a homological functor. These equivariant coarse homology theories are then employed to verify that certain functors on the orbit category are CP-functors. This fact has consequences for the injectivity of assembly maps.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Topological equivariant coarse\\nK-homology\",\"authors\":\"U. Bunke, A. Engel\",\"doi\":\"10.2140/akt.2023.8.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a $C^{*}$-category with a strict $G$-action we construct examples of equivariant coarse homology theories. To this end we first introduce versions of Roe categories of objects in $C^{*}$-categories which are controlled over bornological coarse spaces, and then apply a homological functor. These equivariant coarse homology theories are then employed to verify that certain functors on the orbit category are CP-functors. This fact has consequences for the injectivity of assembly maps.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2023.8.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2023.8.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

对于具有严格$G$-作用的$C^{*}$-范畴,我们构造了等变粗同调理论的例子。为此,我们首先引入了在bornological粗空间上控制的$C^{*}$-范畴中对象的Roe范畴的版本,然后应用同调函子。然后利用这些等变粗同调理论来验证轨道范畴上的某些函子是CP函子。这一事实对装配映射的内射性有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological equivariant coarse K-homology
For a $C^{*}$-category with a strict $G$-action we construct examples of equivariant coarse homology theories. To this end we first introduce versions of Roe categories of objects in $C^{*}$-categories which are controlled over bornological coarse spaces, and then apply a homological functor. These equivariant coarse homology theories are then employed to verify that certain functors on the orbit category are CP-functors. This fact has consequences for the injectivity of assembly maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信