{"title":"拓扑等变coarsek -同调","authors":"U. Bunke, A. Engel","doi":"10.2140/akt.2023.8.141","DOIUrl":null,"url":null,"abstract":"For a $C^{*}$-category with a strict $G$-action we construct examples of equivariant coarse homology theories. To this end we first introduce versions of Roe categories of objects in $C^{*}$-categories which are controlled over bornological coarse spaces, and then apply a homological functor. These equivariant coarse homology theories are then employed to verify that certain functors on the orbit category are CP-functors. This fact has consequences for the injectivity of assembly maps.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Topological equivariant coarse\\nK-homology\",\"authors\":\"U. Bunke, A. Engel\",\"doi\":\"10.2140/akt.2023.8.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a $C^{*}$-category with a strict $G$-action we construct examples of equivariant coarse homology theories. To this end we first introduce versions of Roe categories of objects in $C^{*}$-categories which are controlled over bornological coarse spaces, and then apply a homological functor. These equivariant coarse homology theories are then employed to verify that certain functors on the orbit category are CP-functors. This fact has consequences for the injectivity of assembly maps.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2023.8.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2023.8.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
For a $C^{*}$-category with a strict $G$-action we construct examples of equivariant coarse homology theories. To this end we first introduce versions of Roe categories of objects in $C^{*}$-categories which are controlled over bornological coarse spaces, and then apply a homological functor. These equivariant coarse homology theories are then employed to verify that certain functors on the orbit category are CP-functors. This fact has consequences for the injectivity of assembly maps.