多维常形替换之间的同态

Pub Date : 2021-06-19 DOI:10.4171/ggd/726
C. Cabezas
{"title":"多维常形替换之间的同态","authors":"C. Cabezas","doi":"10.4171/ggd/726","DOIUrl":null,"url":null,"abstract":"We study a class of $\\Z^{d}$-substitutive subshifts, including a large family of constant-length substitutions, and homomorphisms between them, i.e., factors modulo isomorphisms of $\\Z^{d}$. We prove that any measurable factor map and even any homomorphism associated to a matrix commuting with the expansion matrix, induces a continuous one. We also get strong restrictions on the normalizer group, proving that any endomorphism is invertible, the normalizer group is virtually generated by the shift action and the quotient of the normalizer group by the automorphisms is restricted by the digit tile of the substitution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Homomorphisms between multidimensional constant-shape substitutions\",\"authors\":\"C. Cabezas\",\"doi\":\"10.4171/ggd/726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a class of $\\\\Z^{d}$-substitutive subshifts, including a large family of constant-length substitutions, and homomorphisms between them, i.e., factors modulo isomorphisms of $\\\\Z^{d}$. We prove that any measurable factor map and even any homomorphism associated to a matrix commuting with the expansion matrix, induces a continuous one. We also get strong restrictions on the normalizer group, proving that any endomorphism is invertible, the normalizer group is virtually generated by the shift action and the quotient of the normalizer group by the automorphisms is restricted by the digit tile of the substitution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了一类$\Z^{d}$的替换子移位,包括一大族的常长替换,以及它们之间的同态,即$\Z^{d}$的因子模同构。证明了与展开式矩阵交换的矩阵的任何可测因子映射甚至任何同态映射都可以导出一个连续的同态。我们还得到了正则化群的强约束条件,证明了任意自同构是可逆的,正则化群是由移位作用虚生成的,正则化群与自同构的商受替换的位数约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Homomorphisms between multidimensional constant-shape substitutions
We study a class of $\Z^{d}$-substitutive subshifts, including a large family of constant-length substitutions, and homomorphisms between them, i.e., factors modulo isomorphisms of $\Z^{d}$. We prove that any measurable factor map and even any homomorphism associated to a matrix commuting with the expansion matrix, induces a continuous one. We also get strong restrictions on the normalizer group, proving that any endomorphism is invertible, the normalizer group is virtually generated by the shift action and the quotient of the normalizer group by the automorphisms is restricted by the digit tile of the substitution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信