集成方法在水质分类中的应用

Q2 Social Sciences
M. Sakizadeh
{"title":"集成方法在水质分类中的应用","authors":"M. Sakizadeh","doi":"10.1504/IJW.2017.10004524","DOIUrl":null,"url":null,"abstract":"Groundwater pollution in Shoosh Aquifer located in Khuzestan Province, Iran, was considered, using an eight years time period data set collected from 30 sampling wells. Cluster analysis rendered a dendrogram where 30 sampling wells were grouped into three statistically significant clusters. The classification methods, k-nearest neighbour and classification tree, were utilised to classify sampling stations, with respect to the level of pollution. The optimum tree depth and number of neighbours were determined by 4-fold misclassification error which both had an error of 0.167. An ensemble was created using these base classifiers. In addition, considering the small sample size of our data in this study, random subspace as a feature selection method was amalgamated with k-nearest neighbour ensemble. The misclassification errors of classification tree and k-nearest neighbour ensembles were 0.13 and 0.10, respectively. The results of this study confirmed the high accuracy of ensemble methods for data classification.","PeriodicalId":39788,"journal":{"name":"International Journal of Water","volume":"11 1","pages":"114-131"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of ensemble methods for classification of water quality\",\"authors\":\"M. Sakizadeh\",\"doi\":\"10.1504/IJW.2017.10004524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Groundwater pollution in Shoosh Aquifer located in Khuzestan Province, Iran, was considered, using an eight years time period data set collected from 30 sampling wells. Cluster analysis rendered a dendrogram where 30 sampling wells were grouped into three statistically significant clusters. The classification methods, k-nearest neighbour and classification tree, were utilised to classify sampling stations, with respect to the level of pollution. The optimum tree depth and number of neighbours were determined by 4-fold misclassification error which both had an error of 0.167. An ensemble was created using these base classifiers. In addition, considering the small sample size of our data in this study, random subspace as a feature selection method was amalgamated with k-nearest neighbour ensemble. The misclassification errors of classification tree and k-nearest neighbour ensembles were 0.13 and 0.10, respectively. The results of this study confirmed the high accuracy of ensemble methods for data classification.\",\"PeriodicalId\":39788,\"journal\":{\"name\":\"International Journal of Water\",\"volume\":\"11 1\",\"pages\":\"114-131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJW.2017.10004524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJW.2017.10004524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

利用从30口采样井收集的8年时间数据集,研究了伊朗Khuzestan省Shoosh含水层的地下水污染情况。聚类分析绘制了一个树状图,其中30个采样井被分为三个统计上显著的簇。分类方法,k近邻和分类树,被用来分类采样站,相对于污染水平。通过4倍的误分类误差确定最佳树深度和邻居数,误差均为0.167。使用这些基本分类器创建了一个集成。此外,考虑到本研究数据样本量较小,随机子空间作为特征选择方法与k近邻集合相结合。分类树和k近邻系统的误分类误差分别为0.13和0.10。本研究的结果证实了集成方法对数据分类的高准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of ensemble methods for classification of water quality
Groundwater pollution in Shoosh Aquifer located in Khuzestan Province, Iran, was considered, using an eight years time period data set collected from 30 sampling wells. Cluster analysis rendered a dendrogram where 30 sampling wells were grouped into three statistically significant clusters. The classification methods, k-nearest neighbour and classification tree, were utilised to classify sampling stations, with respect to the level of pollution. The optimum tree depth and number of neighbours were determined by 4-fold misclassification error which both had an error of 0.167. An ensemble was created using these base classifiers. In addition, considering the small sample size of our data in this study, random subspace as a feature selection method was amalgamated with k-nearest neighbour ensemble. The misclassification errors of classification tree and k-nearest neighbour ensembles were 0.13 and 0.10, respectively. The results of this study confirmed the high accuracy of ensemble methods for data classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Water
International Journal of Water Social Sciences-Geography, Planning and Development
CiteScore
0.40
自引率
0.00%
发文量
0
期刊介绍: The IJW is a fully refereed journal, providing a high profile international outlet for analyses and discussions of all aspects of water, environment and society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信