修复发电厂:线粒体DNA的基因工程

Q4 Biochemistry, Genetics and Molecular Biology
Biochemist Pub Date : 2022-07-27 DOI:10.1042/bio_2022_120
C. Mutti, Pedro Silva-Pinheiro, M. Minczuk
{"title":"修复发电厂:线粒体DNA的基因工程","authors":"C. Mutti, Pedro Silva-Pinheiro, M. Minczuk","doi":"10.1042/bio_2022_120","DOIUrl":null,"url":null,"abstract":"Mitochondria are complex factories that provide our cells with most of the energy we need to survive and perform daily tasks. They comprise their own small genome, mitochondrial DNA (mtDNA), which contains genes for parts of the energy-producing machinery. Mutations in mtDNA can lead to mitochondrial diseases, which are a devastating group of heterogenous inheritable diseases that can develop at any stage of life. Despite rapid developments in genome engineering for nuclear DNA, the incompatibility of certain techniques in mitochondria has meant that the field of mitochondrial genome modification has been impeded for many years. However, recent advances in mtDNA engineering techniques, such as programmable nucleases and base editors, will allow for a deeper understanding of the processes taking place in mitochondria and improve the prospects of developing treatments for mitochondrial diseases.","PeriodicalId":35334,"journal":{"name":"Biochemist","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixing the powerhouse: genetic engineering of mitochondrial DNA\",\"authors\":\"C. Mutti, Pedro Silva-Pinheiro, M. Minczuk\",\"doi\":\"10.1042/bio_2022_120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mitochondria are complex factories that provide our cells with most of the energy we need to survive and perform daily tasks. They comprise their own small genome, mitochondrial DNA (mtDNA), which contains genes for parts of the energy-producing machinery. Mutations in mtDNA can lead to mitochondrial diseases, which are a devastating group of heterogenous inheritable diseases that can develop at any stage of life. Despite rapid developments in genome engineering for nuclear DNA, the incompatibility of certain techniques in mitochondria has meant that the field of mitochondrial genome modification has been impeded for many years. However, recent advances in mtDNA engineering techniques, such as programmable nucleases and base editors, will allow for a deeper understanding of the processes taking place in mitochondria and improve the prospects of developing treatments for mitochondrial diseases.\",\"PeriodicalId\":35334,\"journal\":{\"name\":\"Biochemist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1042/bio_2022_120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/bio_2022_120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

线粒体是复杂的工厂,为我们的细胞提供生存和执行日常任务所需的大部分能量。它们包含自己的小基因组,线粒体DNA(mtDNA),其中包含能量产生机制部分的基因。线粒体DNA的突变会导致线粒体疾病,这是一组破坏性的异质遗传疾病,可以在生命的任何阶段发展。尽管核DNA基因组工程发展迅速,但线粒体某些技术的不兼容性意味着线粒体基因组修饰领域多年来一直受到阻碍。然而,线粒体DNA工程技术的最新进展,如可编程核酸酶和碱基编辑器,将有助于更深入地了解线粒体中发生的过程,并提高开发线粒体疾病治疗方法的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixing the powerhouse: genetic engineering of mitochondrial DNA
Mitochondria are complex factories that provide our cells with most of the energy we need to survive and perform daily tasks. They comprise their own small genome, mitochondrial DNA (mtDNA), which contains genes for parts of the energy-producing machinery. Mutations in mtDNA can lead to mitochondrial diseases, which are a devastating group of heterogenous inheritable diseases that can develop at any stage of life. Despite rapid developments in genome engineering for nuclear DNA, the incompatibility of certain techniques in mitochondria has meant that the field of mitochondrial genome modification has been impeded for many years. However, recent advances in mtDNA engineering techniques, such as programmable nucleases and base editors, will allow for a deeper understanding of the processes taking place in mitochondria and improve the prospects of developing treatments for mitochondrial diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemist
Biochemist Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.20
自引率
0.00%
发文量
41
期刊介绍: This lively and eclectic magazine for all life scientists appears six times a year. Its quirky style and astute selection of serious and humorous articles ensures that the magazine"s appeal is by no means restricted to that of the avid biochemist. Specially commissioned articles from leading scientists bring a popular science perspective direct to you! Forthcoming themes include: RNAi, Money in Science, Extremophiles, Biosystems and Mathematical Modelling, Renascence of Mitochondria, Prions & Protein factors, Imaging live cells and Model organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信