Devashish R. Purandare, Daniel Bittman, E. L. Miller
{"title":"CERN EOS存储系统的分析与工作负载表征","authors":"Devashish R. Purandare, Daniel Bittman, E. L. Miller","doi":"10.1145/3544497.3544507","DOIUrl":null,"url":null,"abstract":"Modern, large-scale scientific computing runs on complex exascale storage systems that support even more complex data workloads. Understanding the data access and movement patterns is vital for informing the design of future iterations of existing systems and next-generation systems. Yet we are lacking in publicly available traces and tools to help us understand even one system in depth, let alone correlate long-term cross-system trends.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"56 1","pages":"55 - 61"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Workload Characterization of the CERN EOS Storage System\",\"authors\":\"Devashish R. Purandare, Daniel Bittman, E. L. Miller\",\"doi\":\"10.1145/3544497.3544507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern, large-scale scientific computing runs on complex exascale storage systems that support even more complex data workloads. Understanding the data access and movement patterns is vital for informing the design of future iterations of existing systems and next-generation systems. Yet we are lacking in publicly available traces and tools to help us understand even one system in depth, let alone correlate long-term cross-system trends.\",\"PeriodicalId\":38935,\"journal\":{\"name\":\"Operating Systems Review (ACM)\",\"volume\":\"56 1\",\"pages\":\"55 - 61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operating Systems Review (ACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3544497.3544507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544497.3544507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Analysis and Workload Characterization of the CERN EOS Storage System
Modern, large-scale scientific computing runs on complex exascale storage systems that support even more complex data workloads. Understanding the data access and movement patterns is vital for informing the design of future iterations of existing systems and next-generation systems. Yet we are lacking in publicly available traces and tools to help us understand even one system in depth, let alone correlate long-term cross-system trends.
期刊介绍:
Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.