{"title":"东北亚北海道东部碎屑锆石U–Pb年代学推断的古千岛弧的起源和演化","authors":"Futoshi Nanayama, Toru Yamasaki, Toshiya Kanamatsu, Hideki Iwano, Tohru Danhara, Takafumi Hirata","doi":"10.1111/iar.12458","DOIUrl":null,"url":null,"abstract":"<p>The Nemuro and Saroma Groups and Yusenkyo Formation occur in eastern Hokkaido and are considered to be forearc or intra-arc basin sediments of the Paleo-Kuril arc (PKA) deposited during the Late Cretaceous to middle Eocene. To further clarify the origin of the PKA, we examined the U–Pb ages of detrital zircons within these sandstones and acidic tuff beds; based on our results, we drew the following conclusions. (1) The PKA originated from an oceanic island arc on the oceanic Izanagi Plate around 85 Ma, to which the Nikoro Group greenstone complex was accreted between 81–80 Ma; the Lowest Unit of the Saroma Group covered the surface of the Nikoro accretional greenstone complex. (2) The PKA then first collided with NE Asia around the beginning of the deposition of the Hamanaka Formation (~70 Ma) and transitioned to a continental arc adjacent to NE Asia. This collision generated giant slump beds during deposition of the Akkeshi Formation. During deposition of the Kiritappu Formation, the entire Nemuro Peninsula was uplifted, supplying large volumes of clastic sediments. (3) Although we do not have data directly bearing on why the North American Plate was established in the edge of NE Asia, we speculate that it separated from the Eurasian continent around ~70 Ma when NE Asia first collided with the PKA. Subsequently, the PKA has behaved as part of the North American Plate. The Paleo-Japan arc (or East Sikhote–Alin arc) and the PKA became joined via the Hidaka Belt. Around 40 Ma, during the deposition of coarse conglomerate beds of the Urahoro Group, the PKA was uplifted and bent clockwise due to a second collision with NE Asia. (4) The modern Kuril arc was established around 36 Ma (late Eocene–early Oligocene), and the Kuril backarc basin opened into the present tectonic setting in the late Oligocene–early Miocene.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origin and evolution of the Paleo-Kuril arc inferred from detrital zircon U–Pb chronology in eastern Hokkaido, NE Asia\",\"authors\":\"Futoshi Nanayama, Toru Yamasaki, Toshiya Kanamatsu, Hideki Iwano, Tohru Danhara, Takafumi Hirata\",\"doi\":\"10.1111/iar.12458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Nemuro and Saroma Groups and Yusenkyo Formation occur in eastern Hokkaido and are considered to be forearc or intra-arc basin sediments of the Paleo-Kuril arc (PKA) deposited during the Late Cretaceous to middle Eocene. To further clarify the origin of the PKA, we examined the U–Pb ages of detrital zircons within these sandstones and acidic tuff beds; based on our results, we drew the following conclusions. (1) The PKA originated from an oceanic island arc on the oceanic Izanagi Plate around 85 Ma, to which the Nikoro Group greenstone complex was accreted between 81–80 Ma; the Lowest Unit of the Saroma Group covered the surface of the Nikoro accretional greenstone complex. (2) The PKA then first collided with NE Asia around the beginning of the deposition of the Hamanaka Formation (~70 Ma) and transitioned to a continental arc adjacent to NE Asia. This collision generated giant slump beds during deposition of the Akkeshi Formation. During deposition of the Kiritappu Formation, the entire Nemuro Peninsula was uplifted, supplying large volumes of clastic sediments. (3) Although we do not have data directly bearing on why the North American Plate was established in the edge of NE Asia, we speculate that it separated from the Eurasian continent around ~70 Ma when NE Asia first collided with the PKA. Subsequently, the PKA has behaved as part of the North American Plate. The Paleo-Japan arc (or East Sikhote–Alin arc) and the PKA became joined via the Hidaka Belt. Around 40 Ma, during the deposition of coarse conglomerate beds of the Urahoro Group, the PKA was uplifted and bent clockwise due to a second collision with NE Asia. (4) The modern Kuril arc was established around 36 Ma (late Eocene–early Oligocene), and the Kuril backarc basin opened into the present tectonic setting in the late Oligocene–early Miocene.</p>\",\"PeriodicalId\":14791,\"journal\":{\"name\":\"Island Arc\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Island Arc\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iar.12458\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12458","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Origin and evolution of the Paleo-Kuril arc inferred from detrital zircon U–Pb chronology in eastern Hokkaido, NE Asia
The Nemuro and Saroma Groups and Yusenkyo Formation occur in eastern Hokkaido and are considered to be forearc or intra-arc basin sediments of the Paleo-Kuril arc (PKA) deposited during the Late Cretaceous to middle Eocene. To further clarify the origin of the PKA, we examined the U–Pb ages of detrital zircons within these sandstones and acidic tuff beds; based on our results, we drew the following conclusions. (1) The PKA originated from an oceanic island arc on the oceanic Izanagi Plate around 85 Ma, to which the Nikoro Group greenstone complex was accreted between 81–80 Ma; the Lowest Unit of the Saroma Group covered the surface of the Nikoro accretional greenstone complex. (2) The PKA then first collided with NE Asia around the beginning of the deposition of the Hamanaka Formation (~70 Ma) and transitioned to a continental arc adjacent to NE Asia. This collision generated giant slump beds during deposition of the Akkeshi Formation. During deposition of the Kiritappu Formation, the entire Nemuro Peninsula was uplifted, supplying large volumes of clastic sediments. (3) Although we do not have data directly bearing on why the North American Plate was established in the edge of NE Asia, we speculate that it separated from the Eurasian continent around ~70 Ma when NE Asia first collided with the PKA. Subsequently, the PKA has behaved as part of the North American Plate. The Paleo-Japan arc (or East Sikhote–Alin arc) and the PKA became joined via the Hidaka Belt. Around 40 Ma, during the deposition of coarse conglomerate beds of the Urahoro Group, the PKA was uplifted and bent clockwise due to a second collision with NE Asia. (4) The modern Kuril arc was established around 36 Ma (late Eocene–early Oligocene), and the Kuril backarc basin opened into the present tectonic setting in the late Oligocene–early Miocene.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.