{"title":"一元多聚对数及其$q$-类似物的对偶性","authors":"Shuji Yamamoto","doi":"10.3836/tjm/1502179378","DOIUrl":null,"url":null,"abstract":"The duality relation of one-variable multiple polylogarithms was proved by Hirose, Iwaki, Sato and Tasaka by means of iterated integrals. In this paper, we give a new proof using the method of connected sums, which was recently invented by Seki and the author. Interestingly, the connected sum involves the hypergeometric function in its connector. Moreover, we introduce two kinds of $q$-analogues of the one-variable multiple poylogarithms and generalize the duality to them.","PeriodicalId":48976,"journal":{"name":"Tokyo Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Duality of One-variable Multiple Polylogarithms and Their $q$-analogues\",\"authors\":\"Shuji Yamamoto\",\"doi\":\"10.3836/tjm/1502179378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The duality relation of one-variable multiple polylogarithms was proved by Hirose, Iwaki, Sato and Tasaka by means of iterated integrals. In this paper, we give a new proof using the method of connected sums, which was recently invented by Seki and the author. Interestingly, the connected sum involves the hypergeometric function in its connector. Moreover, we introduce two kinds of $q$-analogues of the one-variable multiple poylogarithms and generalize the duality to them.\",\"PeriodicalId\":48976,\"journal\":{\"name\":\"Tokyo Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tokyo Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3836/tjm/1502179378\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tokyo Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179378","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Duality of One-variable Multiple Polylogarithms and Their $q$-analogues
The duality relation of one-variable multiple polylogarithms was proved by Hirose, Iwaki, Sato and Tasaka by means of iterated integrals. In this paper, we give a new proof using the method of connected sums, which was recently invented by Seki and the author. Interestingly, the connected sum involves the hypergeometric function in its connector. Moreover, we introduce two kinds of $q$-analogues of the one-variable multiple poylogarithms and generalize the duality to them.
期刊介绍:
The Tokyo Journal of Mathematics was founded in 1978 with the financial support of six institutions in the Tokyo area: Gakushuin University, Keio University, Sophia University, Tokyo Metropolitan University, Tsuda College, and Waseda University. In 2000 Chuo University and Meiji University, in 2005 Tokai University, and in 2013 Tokyo University of Science, joined as supporting institutions.