一元多聚对数及其$q$-类似物的对偶性

Pub Date : 2020-10-12 DOI:10.3836/tjm/1502179378
Shuji Yamamoto
{"title":"一元多聚对数及其$q$-类似物的对偶性","authors":"Shuji Yamamoto","doi":"10.3836/tjm/1502179378","DOIUrl":null,"url":null,"abstract":"The duality relation of one-variable multiple polylogarithms was proved by Hirose, Iwaki, Sato and Tasaka by means of iterated integrals. In this paper, we give a new proof using the method of connected sums, which was recently invented by Seki and the author. Interestingly, the connected sum involves the hypergeometric function in its connector. Moreover, we introduce two kinds of $q$-analogues of the one-variable multiple poylogarithms and generalize the duality to them.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Duality of One-variable Multiple Polylogarithms and Their $q$-analogues\",\"authors\":\"Shuji Yamamoto\",\"doi\":\"10.3836/tjm/1502179378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The duality relation of one-variable multiple polylogarithms was proved by Hirose, Iwaki, Sato and Tasaka by means of iterated integrals. In this paper, we give a new proof using the method of connected sums, which was recently invented by Seki and the author. Interestingly, the connected sum involves the hypergeometric function in its connector. Moreover, we introduce two kinds of $q$-analogues of the one-variable multiple poylogarithms and generalize the duality to them.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3836/tjm/1502179378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Hirose、Iwaki、Sato和Tasaka用迭代积分的方法证明了一元多聚对数的对偶关系。本文利用Seki和作者最近发明的连通和方法给出了一个新的证明。有趣的是,连通和在其连接符中包含超几何函数。此外,我们还引入了一元多幂算法的两类$q$-类似物,并将对偶推广到它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Duality of One-variable Multiple Polylogarithms and Their $q$-analogues
The duality relation of one-variable multiple polylogarithms was proved by Hirose, Iwaki, Sato and Tasaka by means of iterated integrals. In this paper, we give a new proof using the method of connected sums, which was recently invented by Seki and the author. Interestingly, the connected sum involves the hypergeometric function in its connector. Moreover, we introduce two kinds of $q$-analogues of the one-variable multiple poylogarithms and generalize the duality to them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信