{"title":"深度relu神经网络克服偏积分微分方程的维数诅咒","authors":"Lukas Gonon, C. Schwab","doi":"10.1142/s0219530522500129","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) with ReLU activation function are proved to be able to express viscosity solutions of linear partial integrodifferental equations (PIDEs) on state spaces of possibly high dimension $d$. Admissible PIDEs comprise Kolmogorov equations for high-dimensional diffusion, advection, and for pure jump L\\'{e}vy processes. We prove for such PIDEs arising from a class of jump-diffusions on $\\mathbb{R}^d$, that for any compact $K\\subset \\mathbb{R}^d$, there exist constants $C,{\\mathfrak{p}},{\\mathfrak{q}}>0$ such that for every $\\varepsilon \\in (0,1]$ and for every $d\\in \\mathbb{N}$ the normalized (over $K$) DNN $L^2$-expression error of viscosity solutions of the PIDE is of size $\\varepsilon$ with DNN size bounded by $Cd^{\\mathfrak{p}}\\varepsilon^{-\\mathfrak{q}}$. In particular, the constant $C>0$ is independent of $d\\in \\mathbb{N}$ and of $\\varepsilon \\in (0,1]$ and depends only on the coefficients in the PIDE and the measure used to quantify the error. This establishes that ReLU DNNs can break the curse of dimensionality (CoD for short) for viscosity solutions of linear, possibly degenerate PIDEs corresponding to Markovian jump-diffusion processes. As a consequence of the employed techniques we also obtain that expectations of a large class of path-dependent functionals of the underlying jump-diffusion processes can be expressed without the CoD.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Deep relu neural networks overcome the curse of dimensionality for partial integrodifferential equations\",\"authors\":\"Lukas Gonon, C. Schwab\",\"doi\":\"10.1142/s0219530522500129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks (DNNs) with ReLU activation function are proved to be able to express viscosity solutions of linear partial integrodifferental equations (PIDEs) on state spaces of possibly high dimension $d$. Admissible PIDEs comprise Kolmogorov equations for high-dimensional diffusion, advection, and for pure jump L\\\\'{e}vy processes. We prove for such PIDEs arising from a class of jump-diffusions on $\\\\mathbb{R}^d$, that for any compact $K\\\\subset \\\\mathbb{R}^d$, there exist constants $C,{\\\\mathfrak{p}},{\\\\mathfrak{q}}>0$ such that for every $\\\\varepsilon \\\\in (0,1]$ and for every $d\\\\in \\\\mathbb{N}$ the normalized (over $K$) DNN $L^2$-expression error of viscosity solutions of the PIDE is of size $\\\\varepsilon$ with DNN size bounded by $Cd^{\\\\mathfrak{p}}\\\\varepsilon^{-\\\\mathfrak{q}}$. In particular, the constant $C>0$ is independent of $d\\\\in \\\\mathbb{N}$ and of $\\\\varepsilon \\\\in (0,1]$ and depends only on the coefficients in the PIDE and the measure used to quantify the error. This establishes that ReLU DNNs can break the curse of dimensionality (CoD for short) for viscosity solutions of linear, possibly degenerate PIDEs corresponding to Markovian jump-diffusion processes. As a consequence of the employed techniques we also obtain that expectations of a large class of path-dependent functionals of the underlying jump-diffusion processes can be expressed without the CoD.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530522500129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530522500129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Deep relu neural networks overcome the curse of dimensionality for partial integrodifferential equations
Deep neural networks (DNNs) with ReLU activation function are proved to be able to express viscosity solutions of linear partial integrodifferental equations (PIDEs) on state spaces of possibly high dimension $d$. Admissible PIDEs comprise Kolmogorov equations for high-dimensional diffusion, advection, and for pure jump L\'{e}vy processes. We prove for such PIDEs arising from a class of jump-diffusions on $\mathbb{R}^d$, that for any compact $K\subset \mathbb{R}^d$, there exist constants $C,{\mathfrak{p}},{\mathfrak{q}}>0$ such that for every $\varepsilon \in (0,1]$ and for every $d\in \mathbb{N}$ the normalized (over $K$) DNN $L^2$-expression error of viscosity solutions of the PIDE is of size $\varepsilon$ with DNN size bounded by $Cd^{\mathfrak{p}}\varepsilon^{-\mathfrak{q}}$. In particular, the constant $C>0$ is independent of $d\in \mathbb{N}$ and of $\varepsilon \in (0,1]$ and depends only on the coefficients in the PIDE and the measure used to quantify the error. This establishes that ReLU DNNs can break the curse of dimensionality (CoD for short) for viscosity solutions of linear, possibly degenerate PIDEs corresponding to Markovian jump-diffusion processes. As a consequence of the employed techniques we also obtain that expectations of a large class of path-dependent functionals of the underlying jump-diffusion processes can be expressed without the CoD.