{"title":"具有非线性平衡态的Boltzmann-Poisson系统的扩散极限","authors":"Lanoir Addala, M. L. Tayeb","doi":"10.1142/S021989161950005X","DOIUrl":null,"url":null,"abstract":"The diffusion approximation for a Boltzmann–Poisson system is studied. Nonlinear relaxation type collision operator is considered. A relative entropy is used to prove useful [Formula: see text]-estimates for the weak solutions of the scaled Boltzmann equation (coupled to Poisson) and to prove the convergence of the solution toward the solution of a nonlinear diffusion equation coupled to Poisson. In one dimension, a hybrid Hilbert expansion and the contraction property of the operator allow to exhibit a convergence rate.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S021989161950005X","citationCount":"0","resultStr":"{\"title\":\"Diffusion limit of a Boltzmann–Poisson system with nonlinear equilibrium state\",\"authors\":\"Lanoir Addala, M. L. Tayeb\",\"doi\":\"10.1142/S021989161950005X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diffusion approximation for a Boltzmann–Poisson system is studied. Nonlinear relaxation type collision operator is considered. A relative entropy is used to prove useful [Formula: see text]-estimates for the weak solutions of the scaled Boltzmann equation (coupled to Poisson) and to prove the convergence of the solution toward the solution of a nonlinear diffusion equation coupled to Poisson. In one dimension, a hybrid Hilbert expansion and the contraction property of the operator allow to exhibit a convergence rate.\",\"PeriodicalId\":50182,\"journal\":{\"name\":\"Journal of Hyperbolic Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S021989161950005X\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hyperbolic Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S021989161950005X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S021989161950005X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Diffusion limit of a Boltzmann–Poisson system with nonlinear equilibrium state
The diffusion approximation for a Boltzmann–Poisson system is studied. Nonlinear relaxation type collision operator is considered. A relative entropy is used to prove useful [Formula: see text]-estimates for the weak solutions of the scaled Boltzmann equation (coupled to Poisson) and to prove the convergence of the solution toward the solution of a nonlinear diffusion equation coupled to Poisson. In one dimension, a hybrid Hilbert expansion and the contraction property of the operator allow to exhibit a convergence rate.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.