一般系统中的混沌与阴影

IF 1 Q1 MATHEMATICS
M. F. Nia, A. Z. Bahabadi
{"title":"一般系统中的混沌与阴影","authors":"M. F. Nia, A. Z. Bahabadi","doi":"10.46793/kgjmat2203.383n","DOIUrl":null,"url":null,"abstract":"In this paper we describe some basic notions of topological dynamical systems for maps of type f : X × X → X named general systems. This is proved that every uniformly expansive general system has the shadowing property and every uniformly contractive general system has the (asymptotic) average shadowing and shadowing properties. In the rest, Devaney chaos for general systems is considered. Also, we show that topological transitivity and density of periodic points of a general systems imply topological ergodicity. We also obtain some results on the topological mixing and sensitivity for general systems.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaos and Shadowing in General Systems\",\"authors\":\"M. F. Nia, A. Z. Bahabadi\",\"doi\":\"10.46793/kgjmat2203.383n\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe some basic notions of topological dynamical systems for maps of type f : X × X → X named general systems. This is proved that every uniformly expansive general system has the shadowing property and every uniformly contractive general system has the (asymptotic) average shadowing and shadowing properties. In the rest, Devaney chaos for general systems is considered. Also, we show that topological transitivity and density of periodic points of a general systems imply topological ergodicity. We also obtain some results on the topological mixing and sensitivity for general systems.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2203.383n\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2203.383n","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了f:X×X型映射的拓扑动力系统的一些基本概念→ X命名的通用系统。证明了每一个一致扩张广义系统都具有遮蔽性,每一个均匀收缩广义系统都有(渐近)平均遮蔽性和遮蔽性。在其余部分中,考虑了一般系统的Devaney混沌。此外,我们还证明了一般系统的拓扑传递性和周期点的密度暗示了拓扑遍历性。我们还得到了关于一般系统的拓扑混合和灵敏度的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaos and Shadowing in General Systems
In this paper we describe some basic notions of topological dynamical systems for maps of type f : X × X → X named general systems. This is proved that every uniformly expansive general system has the shadowing property and every uniformly contractive general system has the (asymptotic) average shadowing and shadowing properties. In the rest, Devaney chaos for general systems is considered. Also, we show that topological transitivity and density of periodic points of a general systems imply topological ergodicity. We also obtain some results on the topological mixing and sensitivity for general systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信