Hamza Zougheib, T. El Arwadi, Rodrigo L. R. Madureira, M. Rincon
{"title":"Green-Naghdi定律下截断热弹性Timoshenko系统的等速度条件和指数稳定性有关系吗?","authors":"Hamza Zougheib, T. El Arwadi, Rodrigo L. R. Madureira, M. Rincon","doi":"10.1080/01495739.2023.2217233","DOIUrl":null,"url":null,"abstract":"Abstract Over the years, the stabilization Timoshenko systems with dissipative features have piqued the interest of researchers. The study of Timoshenko systems under various damping effects has resulted in a significant number of studies. When nonphysical assumptions of equal wave velocities are used in stabilization, the expected exponential decay of the energy solution is attained in all recent research. In this study, we analyze a one-dimensional thermooelastic Timoshenko type system in the setting of the second frequency spectrum, where the assumption of equal wave speed is not required for exponential decay to occur. In fact, According to Elishakoff’s studies [Elishakoff, Advances in Mathematical Modeling and Experimental Methods for Materials and Structures: The Jacob Aboudi Volume, Dordrecht, The Netherlands: Springer, pp. 249–254, 2009.], we consider the so-called truncated version of the Timoshenko system, and we added a thermoelastic damping according to Green Naghdi law of heat conduction. We first use Faedo–Galerkin approximation to verify the system’s global well-posedness. Using a Lyapunov functional we establish an exponential stability without assuming the condition of equal wave speed. A numerical scheme is introduced and analyzed. Finally, assuming extra regularity on the solution, we get some a priori error estimates and we present some numerical results which demonstrate the exponential behavior of the solution. This result significantly improves the previous results in the literature in which equal wave velocities are used to obtain exponential stability.","PeriodicalId":54759,"journal":{"name":"Journal of Thermal Stresses","volume":"46 1","pages":"673 - 705"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Do equal speed condition and exponential stability relate for the truncated thermoelastic Timoshenko system under Green Naghdi law?\",\"authors\":\"Hamza Zougheib, T. El Arwadi, Rodrigo L. R. Madureira, M. Rincon\",\"doi\":\"10.1080/01495739.2023.2217233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Over the years, the stabilization Timoshenko systems with dissipative features have piqued the interest of researchers. The study of Timoshenko systems under various damping effects has resulted in a significant number of studies. When nonphysical assumptions of equal wave velocities are used in stabilization, the expected exponential decay of the energy solution is attained in all recent research. In this study, we analyze a one-dimensional thermooelastic Timoshenko type system in the setting of the second frequency spectrum, where the assumption of equal wave speed is not required for exponential decay to occur. In fact, According to Elishakoff’s studies [Elishakoff, Advances in Mathematical Modeling and Experimental Methods for Materials and Structures: The Jacob Aboudi Volume, Dordrecht, The Netherlands: Springer, pp. 249–254, 2009.], we consider the so-called truncated version of the Timoshenko system, and we added a thermoelastic damping according to Green Naghdi law of heat conduction. We first use Faedo–Galerkin approximation to verify the system’s global well-posedness. Using a Lyapunov functional we establish an exponential stability without assuming the condition of equal wave speed. A numerical scheme is introduced and analyzed. Finally, assuming extra regularity on the solution, we get some a priori error estimates and we present some numerical results which demonstrate the exponential behavior of the solution. This result significantly improves the previous results in the literature in which equal wave velocities are used to obtain exponential stability.\",\"PeriodicalId\":54759,\"journal\":{\"name\":\"Journal of Thermal Stresses\",\"volume\":\"46 1\",\"pages\":\"673 - 705\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Stresses\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/01495739.2023.2217233\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Stresses","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01495739.2023.2217233","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Do equal speed condition and exponential stability relate for the truncated thermoelastic Timoshenko system under Green Naghdi law?
Abstract Over the years, the stabilization Timoshenko systems with dissipative features have piqued the interest of researchers. The study of Timoshenko systems under various damping effects has resulted in a significant number of studies. When nonphysical assumptions of equal wave velocities are used in stabilization, the expected exponential decay of the energy solution is attained in all recent research. In this study, we analyze a one-dimensional thermooelastic Timoshenko type system in the setting of the second frequency spectrum, where the assumption of equal wave speed is not required for exponential decay to occur. In fact, According to Elishakoff’s studies [Elishakoff, Advances in Mathematical Modeling and Experimental Methods for Materials and Structures: The Jacob Aboudi Volume, Dordrecht, The Netherlands: Springer, pp. 249–254, 2009.], we consider the so-called truncated version of the Timoshenko system, and we added a thermoelastic damping according to Green Naghdi law of heat conduction. We first use Faedo–Galerkin approximation to verify the system’s global well-posedness. Using a Lyapunov functional we establish an exponential stability without assuming the condition of equal wave speed. A numerical scheme is introduced and analyzed. Finally, assuming extra regularity on the solution, we get some a priori error estimates and we present some numerical results which demonstrate the exponential behavior of the solution. This result significantly improves the previous results in the literature in which equal wave velocities are used to obtain exponential stability.
期刊介绍:
The first international journal devoted exclusively to the subject, Journal of Thermal Stresses publishes refereed articles on the theoretical and industrial applications of thermal stresses. Intended as a forum for those engaged in analytic as well as experimental research, this monthly journal includes papers on mathematical and practical applications. Emphasis is placed on new developments in thermoelasticity, thermoplasticity, and theory and applications of thermal stresses. Papers on experimental methods and on numerical methods, including finite element methods, are also published.