{"title":"非标准再生元素的木材布局的最小浪费设计:基于结构互惠的组合方法","authors":"Dario Parigi","doi":"10.1177/09560599211064091","DOIUrl":null,"url":null,"abstract":"The use of timber allows reducing the environmental impact in the construction sector. However, as the demand for construction timber rises, the pressure on the world’s forest is increasing too. To maintain an adequate supply of timber from sustainable forests in the coming decades, the building industry must adopt practices that reduce the impact on forestry. Reuse is one of the principles of Circular Economy (CE). Among the technical challenges of reuse are the variability and the short size of the stock of elements coming either from demolition or from new construction, such as cut-offs and temporary scaffolding. This work presents a study for the design of structural configurations with short and non-regular sized elements that would normally be considered waste. The configurations are based on the principle of structural reciprocity and are generated by an optimization algorithm that allows minimizing the material waste and maximizing the stock elements use. A computational strategy based on the SPEA-II multi-objective method is employed for the investigation of optimal trade-offs between competing objective functions, such as structural lightness and optimal use of stock inventory. The goal of this work is demonstrating the feasibility of an industrial process, borrowing key elements from the Industry 4.0 paradigm, for a streamlined and economical production of standardized building components using non-standard reclaimed elements.","PeriodicalId":34964,"journal":{"name":"International Journal of Space Structures","volume":"36 1","pages":"270 - 280"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Minimal-waste design of timber layouts from non-standard reclaimed elements: A combinatorial approach based on structural reciprocity\",\"authors\":\"Dario Parigi\",\"doi\":\"10.1177/09560599211064091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of timber allows reducing the environmental impact in the construction sector. However, as the demand for construction timber rises, the pressure on the world’s forest is increasing too. To maintain an adequate supply of timber from sustainable forests in the coming decades, the building industry must adopt practices that reduce the impact on forestry. Reuse is one of the principles of Circular Economy (CE). Among the technical challenges of reuse are the variability and the short size of the stock of elements coming either from demolition or from new construction, such as cut-offs and temporary scaffolding. This work presents a study for the design of structural configurations with short and non-regular sized elements that would normally be considered waste. The configurations are based on the principle of structural reciprocity and are generated by an optimization algorithm that allows minimizing the material waste and maximizing the stock elements use. A computational strategy based on the SPEA-II multi-objective method is employed for the investigation of optimal trade-offs between competing objective functions, such as structural lightness and optimal use of stock inventory. The goal of this work is demonstrating the feasibility of an industrial process, borrowing key elements from the Industry 4.0 paradigm, for a streamlined and economical production of standardized building components using non-standard reclaimed elements.\",\"PeriodicalId\":34964,\"journal\":{\"name\":\"International Journal of Space Structures\",\"volume\":\"36 1\",\"pages\":\"270 - 280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Space Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09560599211064091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09560599211064091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Minimal-waste design of timber layouts from non-standard reclaimed elements: A combinatorial approach based on structural reciprocity
The use of timber allows reducing the environmental impact in the construction sector. However, as the demand for construction timber rises, the pressure on the world’s forest is increasing too. To maintain an adequate supply of timber from sustainable forests in the coming decades, the building industry must adopt practices that reduce the impact on forestry. Reuse is one of the principles of Circular Economy (CE). Among the technical challenges of reuse are the variability and the short size of the stock of elements coming either from demolition or from new construction, such as cut-offs and temporary scaffolding. This work presents a study for the design of structural configurations with short and non-regular sized elements that would normally be considered waste. The configurations are based on the principle of structural reciprocity and are generated by an optimization algorithm that allows minimizing the material waste and maximizing the stock elements use. A computational strategy based on the SPEA-II multi-objective method is employed for the investigation of optimal trade-offs between competing objective functions, such as structural lightness and optimal use of stock inventory. The goal of this work is demonstrating the feasibility of an industrial process, borrowing key elements from the Industry 4.0 paradigm, for a streamlined and economical production of standardized building components using non-standard reclaimed elements.
期刊介绍:
The aim of the journal is to provide an international forum for the interchange of information on all aspects of analysis, design and construction of space structures. The scope of the journal encompasses structures such as single-, double- and multi-layer grids, barrel vaults, domes, towers, folded plates, radar dishes, tensegrity structures, stressed skin assemblies, foldable structures, pneumatic systems and cable arrangements. No limitation on the type of material is imposed and the scope includes structures constructed in steel, aluminium, timber, concrete, plastics, paperboard and fabric.