{"title":"广义Radon测度的修正Hardy-Littlewood极大算子的一个弱型向量值不等式","authors":"Y. Sawano","doi":"10.1515/agms-2020-0113","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to prove the weak type vector-valued inequality for the modified Hardy– Littlewood maximal operator for general Radon measure on ℝn. Earlier, the strong type vector-valued inequality for the same operator and the weak type vector-valued inequality for the dyadic maximal operator were obtained. This paper will supplement these existing results by proving a weak type counterpart.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"8 1","pages":"261 - 267"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2020-0113","citationCount":"0","resultStr":"{\"title\":\"A Weak Type Vector-Valued Inequality for the Modified Hardy–Littlewood Maximal Operator for General Radon Measure on ℝn\",\"authors\":\"Y. Sawano\",\"doi\":\"10.1515/agms-2020-0113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to prove the weak type vector-valued inequality for the modified Hardy– Littlewood maximal operator for general Radon measure on ℝn. Earlier, the strong type vector-valued inequality for the same operator and the weak type vector-valued inequality for the dyadic maximal operator were obtained. This paper will supplement these existing results by proving a weak type counterpart.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"8 1\",\"pages\":\"261 - 267\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2020-0113\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2020-0113\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0113","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Weak Type Vector-Valued Inequality for the Modified Hardy–Littlewood Maximal Operator for General Radon Measure on ℝn
Abstract The aim of this paper is to prove the weak type vector-valued inequality for the modified Hardy– Littlewood maximal operator for general Radon measure on ℝn. Earlier, the strong type vector-valued inequality for the same operator and the weak type vector-valued inequality for the dyadic maximal operator were obtained. This paper will supplement these existing results by proving a weak type counterpart.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.