{"title":"Turán定理的精确稳定性","authors":"D'aniel Kor'andi, Alexander Roberts, A. Scott","doi":"10.19086/aic.31079","DOIUrl":null,"url":null,"abstract":"Turán's Theorem says that an extremal Kr+1-free graph is r-partite. The Stability Theorem of Erdős and Simonovits shows that if a Kr+1-free graph with n vertices has close to the maximal tr(n) edges, then it is close to being r-partite. In this paper we determine exactly the Kr+1-free graphs with at least m edges that are farthest from being r-partite, for any m≥tr(n)−δrn2. This extends work by Erdős, Győri and Simonovits, and proves a conjecture of Balogh, Clemen, Lavrov, Lidický and Pfender.","PeriodicalId":36338,"journal":{"name":"Advances in Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Exact stability for Turán’s Theorem\",\"authors\":\"D'aniel Kor'andi, Alexander Roberts, A. Scott\",\"doi\":\"10.19086/aic.31079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turán's Theorem says that an extremal Kr+1-free graph is r-partite. The Stability Theorem of Erdős and Simonovits shows that if a Kr+1-free graph with n vertices has close to the maximal tr(n) edges, then it is close to being r-partite. In this paper we determine exactly the Kr+1-free graphs with at least m edges that are farthest from being r-partite, for any m≥tr(n)−δrn2. This extends work by Erdős, Győri and Simonovits, and proves a conjecture of Balogh, Clemen, Lavrov, Lidický and Pfender.\",\"PeriodicalId\":36338,\"journal\":{\"name\":\"Advances in Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19086/aic.31079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/aic.31079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Turán's Theorem says that an extremal Kr+1-free graph is r-partite. The Stability Theorem of Erdős and Simonovits shows that if a Kr+1-free graph with n vertices has close to the maximal tr(n) edges, then it is close to being r-partite. In this paper we determine exactly the Kr+1-free graphs with at least m edges that are farthest from being r-partite, for any m≥tr(n)−δrn2. This extends work by Erdős, Győri and Simonovits, and proves a conjecture of Balogh, Clemen, Lavrov, Lidický and Pfender.