关于Brownian桥局部时间的存在性和Hölder正则性

IF 0.3 Q4 STATISTICS & PROBABILITY
O. Allaoui, A. Sghir, S. Hadiri
{"title":"关于Brownian桥局部时间的存在性和Hölder正则性","authors":"O. Allaoui, A. Sghir, S. Hadiri","doi":"10.1515/rose-2022-2087","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we will establish the existence and the Hölder regularity of the local time of the Brownian bridge. Our results are obtained by using a result on Malliavin calculus in [K. Es-Sebaiy, D. Nualart, Y. Ouknine and C. A. Tudor, Occupation densities for certain processes related to fractional Brownian motion, Stochastics 82 2010, 1–3, 133–147] for a Gaussian process with an absolutely continuous random drift, jointly with the classical approach based on the concept of local nondeterminism for Gaussian processes introduced by Berman [S. M. Berman, Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 1973/74, 69–94].","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"30 1","pages":"259 - 270"},"PeriodicalIF":0.3000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence and the Hölder regularity of the local time of the Brownian bridge\",\"authors\":\"O. Allaoui, A. Sghir, S. Hadiri\",\"doi\":\"10.1515/rose-2022-2087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we will establish the existence and the Hölder regularity of the local time of the Brownian bridge. Our results are obtained by using a result on Malliavin calculus in [K. Es-Sebaiy, D. Nualart, Y. Ouknine and C. A. Tudor, Occupation densities for certain processes related to fractional Brownian motion, Stochastics 82 2010, 1–3, 133–147] for a Gaussian process with an absolutely continuous random drift, jointly with the classical approach based on the concept of local nondeterminism for Gaussian processes introduced by Berman [S. M. Berman, Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 1973/74, 69–94].\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"30 1\",\"pages\":\"259 - 270\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2022-2087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2022-2087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本文中,我们将建立布朗桥的局部时间的存在性和Hölder正则性。我们的结果是通过使用[K.Es-Sebaiy,D.Nualart,Y.Ouknine和C.a.Tudor,与分数布朗运动相关的某些过程的占用密度,Stocurtics 82 2010,1-3133–147]中关于具有绝对连续随机漂移的高斯过程的Malliavin演算的结果获得的,结合Berman提出的基于高斯过程局部不确定性概念的经典方法[S.M.Berman,高斯过程的局部不确定性和局部时间,印第安纳大学数学杂志,1973/74,69–94]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence and the Hölder regularity of the local time of the Brownian bridge
Abstract In this paper, we will establish the existence and the Hölder regularity of the local time of the Brownian bridge. Our results are obtained by using a result on Malliavin calculus in [K. Es-Sebaiy, D. Nualart, Y. Ouknine and C. A. Tudor, Occupation densities for certain processes related to fractional Brownian motion, Stochastics 82 2010, 1–3, 133–147] for a Gaussian process with an absolutely continuous random drift, jointly with the classical approach based on the concept of local nondeterminism for Gaussian processes introduced by Berman [S. M. Berman, Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 1973/74, 69–94].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信