{"title":"可分类C*-代数的异常对称性","authors":"Samuel Evington, Sergio Gir'on Pacheco","doi":"10.4064/sm220117-25-6","DOIUrl":null,"url":null,"abstract":"We study the $H^3$ invariant of a group homomorphism $\\phi:G \\rightarrow \\mathrm{Out}(A)$, where $A$ is a classifiable C$^*$-algebra. We show the existence of an obstruction to possible $H^3$ invariants arising from considering the unitary algebraic $K_1$ group. In particular, we prove that when $A$ is the Jiang--Su algebra $\\mathcal{Z}$ this invariant must vanish. We deduce that the unitary fusion categories $\\mathrm{Hilb}(G, \\omega)$ for non-trivial $\\omega \\in H^3(G, \\mathbb{T})$ cannot act on $\\mathcal{Z}$.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Anomalous symmetries of classifiable C*-algebras\",\"authors\":\"Samuel Evington, Sergio Gir'on Pacheco\",\"doi\":\"10.4064/sm220117-25-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the $H^3$ invariant of a group homomorphism $\\\\phi:G \\\\rightarrow \\\\mathrm{Out}(A)$, where $A$ is a classifiable C$^*$-algebra. We show the existence of an obstruction to possible $H^3$ invariants arising from considering the unitary algebraic $K_1$ group. In particular, we prove that when $A$ is the Jiang--Su algebra $\\\\mathcal{Z}$ this invariant must vanish. We deduce that the unitary fusion categories $\\\\mathrm{Hilb}(G, \\\\omega)$ for non-trivial $\\\\omega \\\\in H^3(G, \\\\mathbb{T})$ cannot act on $\\\\mathcal{Z}$.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm220117-25-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm220117-25-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study the $H^3$ invariant of a group homomorphism $\phi:G \rightarrow \mathrm{Out}(A)$, where $A$ is a classifiable C$^*$-algebra. We show the existence of an obstruction to possible $H^3$ invariants arising from considering the unitary algebraic $K_1$ group. In particular, we prove that when $A$ is the Jiang--Su algebra $\mathcal{Z}$ this invariant must vanish. We deduce that the unitary fusion categories $\mathrm{Hilb}(G, \omega)$ for non-trivial $\omega \in H^3(G, \mathbb{T})$ cannot act on $\mathcal{Z}$.
期刊介绍:
The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.