一类具有Hardy势和l1数据的拟线性非强制抛物问题

Q3 Mathematics
Taghi Ahmedatt, Youssef Hajji, H. Hjiaj
{"title":"一类具有Hardy势和l1数据的拟线性非强制抛物问题","authors":"Taghi Ahmedatt, Youssef Hajji, H. Hjiaj","doi":"10.1515/msds-2022-0168","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the following noncoercive quasilinear parabolic problem ∂ u ∂ t − div a ( x , t , u , ∇ u ) + ν ∣ u ∣ s − 1 u = λ ∣ u ∣ p − 2 u ∣ x ∣ p + f in Q T , u = 0 on Σ T , u ( x , 0 ) = u 0 in Ω , \\left\\{\\begin{array}{ll}\\frac{\\partial u}{\\partial t}-\\hspace{0.1em}\\text{div}\\hspace{0.1em}a\\left(x,t,u,\\nabla u)+\\nu {| u| }^{s-1}u=\\lambda \\frac{{| u| }^{p-2}u}{{| x| }^{p}}+f& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{Q}_{T},\\\\ u=0& \\hspace{0.1em}\\text{on}\\hspace{0.1em}\\hspace{0.33em}{\\Sigma }_{T},\\\\ u\\left(x,0)={u}_{0}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega ,\\end{array}\\right. with f ∈ L 1 ( Q T ) f\\in {L}^{1}\\left({Q}_{T}) and u 0 ∈ L 1 ( Ω ) {u}_{0}\\in {L}^{1}\\left(\\Omega ) and show the existence of entropy solutions for this noncoercive parabolic problem with Hardy potential and L1-data.","PeriodicalId":30985,"journal":{"name":"Nonautonomous Dynamical Systems","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasilinear class of noncoercive parabolic problems with Hardy potential and L1-data\",\"authors\":\"Taghi Ahmedatt, Youssef Hajji, H. Hjiaj\",\"doi\":\"10.1515/msds-2022-0168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study the following noncoercive quasilinear parabolic problem ∂ u ∂ t − div a ( x , t , u , ∇ u ) + ν ∣ u ∣ s − 1 u = λ ∣ u ∣ p − 2 u ∣ x ∣ p + f in Q T , u = 0 on Σ T , u ( x , 0 ) = u 0 in Ω , \\\\left\\\\{\\\\begin{array}{ll}\\\\frac{\\\\partial u}{\\\\partial t}-\\\\hspace{0.1em}\\\\text{div}\\\\hspace{0.1em}a\\\\left(x,t,u,\\\\nabla u)+\\\\nu {| u| }^{s-1}u=\\\\lambda \\\\frac{{| u| }^{p-2}u}{{| x| }^{p}}+f& \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{Q}_{T},\\\\\\\\ u=0& \\\\hspace{0.1em}\\\\text{on}\\\\hspace{0.1em}\\\\hspace{0.33em}{\\\\Sigma }_{T},\\\\\\\\ u\\\\left(x,0)={u}_{0}& \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\Omega ,\\\\end{array}\\\\right. with f ∈ L 1 ( Q T ) f\\\\in {L}^{1}\\\\left({Q}_{T}) and u 0 ∈ L 1 ( Ω ) {u}_{0}\\\\in {L}^{1}\\\\left(\\\\Omega ) and show the existence of entropy solutions for this noncoercive parabolic problem with Hardy potential and L1-data.\",\"PeriodicalId\":30985,\"journal\":{\"name\":\"Nonautonomous Dynamical Systems\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonautonomous Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/msds-2022-0168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonautonomous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/msds-2022-0168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了以下的非强制拟线性抛物问题∂u∂t−div a (x, t, u,∇u) + ν∣u∣s−1 u = λ∣u∣p−2 u∣x∣p + f在Q t中,在Σ t上u = 0,在Ω, \left {\begin{array}{ll}\frac{\partial u}{\partial t}-\hspace{0.1em}\text{div}\hspace{0.1em}a\left(x,t,u,\nabla u)+\nu {| u| }^{s-1}u=\lambda \frac{{| u| }^{p-2}u}{{| x| }^{p}}+f& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{Q}_{T},\\ u=0& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}{\Sigma }_{T},\\ u\left(x,0)={u}_{0}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\end{array}\right上u (x, 0) = u 0。与f∈l1 (Q T) f \in L{^}1{}\left (Q_T){和u 0∈l1 (Ω) }u_0{}{}{}\in L{^}1{}\left (\Omega),并证明了具有Hardy势和l1数据的非强制抛物问题熵解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasilinear class of noncoercive parabolic problems with Hardy potential and L1-data
Abstract In this article, we study the following noncoercive quasilinear parabolic problem ∂ u ∂ t − div a ( x , t , u , ∇ u ) + ν ∣ u ∣ s − 1 u = λ ∣ u ∣ p − 2 u ∣ x ∣ p + f in Q T , u = 0 on Σ T , u ( x , 0 ) = u 0 in Ω , \left\{\begin{array}{ll}\frac{\partial u}{\partial t}-\hspace{0.1em}\text{div}\hspace{0.1em}a\left(x,t,u,\nabla u)+\nu {| u| }^{s-1}u=\lambda \frac{{| u| }^{p-2}u}{{| x| }^{p}}+f& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{Q}_{T},\\ u=0& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}{\Sigma }_{T},\\ u\left(x,0)={u}_{0}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\end{array}\right. with f ∈ L 1 ( Q T ) f\in {L}^{1}\left({Q}_{T}) and u 0 ∈ L 1 ( Ω ) {u}_{0}\in {L}^{1}\left(\Omega ) and show the existence of entropy solutions for this noncoercive parabolic problem with Hardy potential and L1-data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonautonomous Dynamical Systems
Nonautonomous Dynamical Systems Mathematics-Analysis
CiteScore
2.10
自引率
0.00%
发文量
12
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信