Chen Shenshen, Tao Ruyi, Lu Xinggan, Xue Shao, Jiang Kun
{"title":"内弹道两相流的高效二维粒子元法","authors":"Chen Shenshen, Tao Ruyi, Lu Xinggan, Xue Shao, Jiang Kun","doi":"10.1080/13647830.2023.2178974","DOIUrl":null,"url":null,"abstract":"Reducing the calculation cost is of great importance as the demand for interior ballistic calculation is increasing. The key factor of interior ballistic simulation is the quest to develop a more efficient method. In this paper, an efficient two-dimension particle element method (PEM) is proposed to simulate the detailed multidimensional flow of the gas and propellant particle in the chamber. Firstly, several real particles are packed as the particle element to reduce the calculation of the solid phase. In particular, the particle element matrix is established to describe the distribution of particle parameters. Secondly, the particle element boundary is adjusted according to the particle’s movement to reduce the computational cost of grid generation. Besides, the dynamic self-adapting mesh map method is adopted to realise the coupling computation between gas phase and the particle element. The application of a standard virtual gun as a standard benchmark for interior ballistic codes is used to validate the accuracy and reliability with 1.68% error. The particle element model accurately describes the distribution of flow field in the chamber. Compared with the two-fluid method, the PEM significantly improves the computational efficiency by 21.7%. The PEM may be promising for the rapid simulation of two-phase flow in interior ballistic.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":"27 1","pages":"558 - 583"},"PeriodicalIF":1.9000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient two-dimension particle element method of interior ballistic two-phase flow\",\"authors\":\"Chen Shenshen, Tao Ruyi, Lu Xinggan, Xue Shao, Jiang Kun\",\"doi\":\"10.1080/13647830.2023.2178974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing the calculation cost is of great importance as the demand for interior ballistic calculation is increasing. The key factor of interior ballistic simulation is the quest to develop a more efficient method. In this paper, an efficient two-dimension particle element method (PEM) is proposed to simulate the detailed multidimensional flow of the gas and propellant particle in the chamber. Firstly, several real particles are packed as the particle element to reduce the calculation of the solid phase. In particular, the particle element matrix is established to describe the distribution of particle parameters. Secondly, the particle element boundary is adjusted according to the particle’s movement to reduce the computational cost of grid generation. Besides, the dynamic self-adapting mesh map method is adopted to realise the coupling computation between gas phase and the particle element. The application of a standard virtual gun as a standard benchmark for interior ballistic codes is used to validate the accuracy and reliability with 1.68% error. The particle element model accurately describes the distribution of flow field in the chamber. Compared with the two-fluid method, the PEM significantly improves the computational efficiency by 21.7%. The PEM may be promising for the rapid simulation of two-phase flow in interior ballistic.\",\"PeriodicalId\":50665,\"journal\":{\"name\":\"Combustion Theory and Modelling\",\"volume\":\"27 1\",\"pages\":\"558 - 583\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion Theory and Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13647830.2023.2178974\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2023.2178974","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Efficient two-dimension particle element method of interior ballistic two-phase flow
Reducing the calculation cost is of great importance as the demand for interior ballistic calculation is increasing. The key factor of interior ballistic simulation is the quest to develop a more efficient method. In this paper, an efficient two-dimension particle element method (PEM) is proposed to simulate the detailed multidimensional flow of the gas and propellant particle in the chamber. Firstly, several real particles are packed as the particle element to reduce the calculation of the solid phase. In particular, the particle element matrix is established to describe the distribution of particle parameters. Secondly, the particle element boundary is adjusted according to the particle’s movement to reduce the computational cost of grid generation. Besides, the dynamic self-adapting mesh map method is adopted to realise the coupling computation between gas phase and the particle element. The application of a standard virtual gun as a standard benchmark for interior ballistic codes is used to validate the accuracy and reliability with 1.68% error. The particle element model accurately describes the distribution of flow field in the chamber. Compared with the two-fluid method, the PEM significantly improves the computational efficiency by 21.7%. The PEM may be promising for the rapid simulation of two-phase flow in interior ballistic.
期刊介绍:
Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.