什么时候深度学习更好,什么时候浅层学习更好:定性分析

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Salvador Robles Herrera, M. Ceberio, V. Kreinovich
{"title":"什么时候深度学习更好,什么时候浅层学习更好:定性分析","authors":"Salvador Robles Herrera, M. Ceberio, V. Kreinovich","doi":"10.1080/17445760.2022.2070748","DOIUrl":null,"url":null,"abstract":"In many practical situations, deep neural networks work better than the traditional ‘shallow’ ones; however, in some cases, the shallow neural networks lead to better results. At present, deciding which type of neural networks will work better is mostly done by trial and error. It is therefore desirable to come up with some criterion of when deep learning is better and when shallow is better. In this paper, we argue that this depends on whether the corresponding situation has natural symmetries: if it does, we expect deep learning to work better, otherwise we expect shallow learning to be more effective. Our general qualitative arguments are strengthened by the fact that in the simplest case, the connection between symmetries and effectiveness of deep learning can be theoretically proven.","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"When is deep learning better and when is shallow learning better: qualitative analysis\",\"authors\":\"Salvador Robles Herrera, M. Ceberio, V. Kreinovich\",\"doi\":\"10.1080/17445760.2022.2070748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many practical situations, deep neural networks work better than the traditional ‘shallow’ ones; however, in some cases, the shallow neural networks lead to better results. At present, deciding which type of neural networks will work better is mostly done by trial and error. It is therefore desirable to come up with some criterion of when deep learning is better and when shallow is better. In this paper, we argue that this depends on whether the corresponding situation has natural symmetries: if it does, we expect deep learning to work better, otherwise we expect shallow learning to be more effective. Our general qualitative arguments are strengthened by the fact that in the simplest case, the connection between symmetries and effectiveness of deep learning can be theoretically proven.\",\"PeriodicalId\":45411,\"journal\":{\"name\":\"International Journal of Parallel Emergent and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Parallel Emergent and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17445760.2022.2070748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2022.2070748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

在许多实际情况下,深度神经网络比传统的“浅层”神经网络工作得更好;然而,在某些情况下,浅层神经网络会产生更好的结果。目前,决定哪种类型的神经网络工作得更好大多是通过试错来完成的。因此,我们希望提出一些标准来判断什么时候深度学习更好,什么时候肤浅学习更好。在本文中,我们认为这取决于相应的情况是否具有自然对称性:如果具有,我们希望深度学习能更好地发挥作用,否则我们希望浅层学习更有效。在最简单的情况下,深度学习的对称性和有效性之间的联系可以从理论上得到证明,这一事实加强了我们的一般定性论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
When is deep learning better and when is shallow learning better: qualitative analysis
In many practical situations, deep neural networks work better than the traditional ‘shallow’ ones; however, in some cases, the shallow neural networks lead to better results. At present, deciding which type of neural networks will work better is mostly done by trial and error. It is therefore desirable to come up with some criterion of when deep learning is better and when shallow is better. In this paper, we argue that this depends on whether the corresponding situation has natural symmetries: if it does, we expect deep learning to work better, otherwise we expect shallow learning to be more effective. Our general qualitative arguments are strengthened by the fact that in the simplest case, the connection between symmetries and effectiveness of deep learning can be theoretically proven.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信