{"title":"走向表明跨学科性:描述跨学科知识流","authors":"Hongyu Zhou, Raf Guns, Tim C. E. Engels","doi":"10.1002/asi.24829","DOIUrl":null,"url":null,"abstract":"<p>This study contributes to the recent discussions on indicating interdisciplinarity, that is, going beyond catch-all metrics of interdisciplinarity. We propose a contextual framework to improve the granularity and usability of the existing methodology for interdisciplinary knowledge flow (IKF) in which scientific disciplines import and export knowledge from/to other disciplines. To characterize the knowledge exchange between disciplines, we recognize three aspects of IKF under this framework, namely broadness, intensity, and homogeneity. We show how to utilize them to uncover different forms of interdisciplinarity, especially between disciplines with the largest volume of IKF. We apply this framework in two use cases, one at the level of disciplines and one at the level of journals, to show how it can offer a more holistic and detailed viewpoint on the interdisciplinarity of scientific entities than aggregated and context-unaware indicators. We further compare our proposed framework, an indicating process, with established indicators and discuss how such information tools on interdisciplinarity can assist science policy practices such as performance-based research funding systems and panel-based peer review processes.</p>","PeriodicalId":48810,"journal":{"name":"Journal of the Association for Information Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards indicating interdisciplinarity: Characterizing interdisciplinary knowledge flow\",\"authors\":\"Hongyu Zhou, Raf Guns, Tim C. E. Engels\",\"doi\":\"10.1002/asi.24829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study contributes to the recent discussions on indicating interdisciplinarity, that is, going beyond catch-all metrics of interdisciplinarity. We propose a contextual framework to improve the granularity and usability of the existing methodology for interdisciplinary knowledge flow (IKF) in which scientific disciplines import and export knowledge from/to other disciplines. To characterize the knowledge exchange between disciplines, we recognize three aspects of IKF under this framework, namely broadness, intensity, and homogeneity. We show how to utilize them to uncover different forms of interdisciplinarity, especially between disciplines with the largest volume of IKF. We apply this framework in two use cases, one at the level of disciplines and one at the level of journals, to show how it can offer a more holistic and detailed viewpoint on the interdisciplinarity of scientific entities than aggregated and context-unaware indicators. We further compare our proposed framework, an indicating process, with established indicators and discuss how such information tools on interdisciplinarity can assist science policy practices such as performance-based research funding systems and panel-based peer review processes.</p>\",\"PeriodicalId\":48810,\"journal\":{\"name\":\"Journal of the Association for Information Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Association for Information Science and Technology\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asi.24829\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association for Information Science and Technology","FirstCategoryId":"91","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asi.24829","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Towards indicating interdisciplinarity: Characterizing interdisciplinary knowledge flow
This study contributes to the recent discussions on indicating interdisciplinarity, that is, going beyond catch-all metrics of interdisciplinarity. We propose a contextual framework to improve the granularity and usability of the existing methodology for interdisciplinary knowledge flow (IKF) in which scientific disciplines import and export knowledge from/to other disciplines. To characterize the knowledge exchange between disciplines, we recognize three aspects of IKF under this framework, namely broadness, intensity, and homogeneity. We show how to utilize them to uncover different forms of interdisciplinarity, especially between disciplines with the largest volume of IKF. We apply this framework in two use cases, one at the level of disciplines and one at the level of journals, to show how it can offer a more holistic and detailed viewpoint on the interdisciplinarity of scientific entities than aggregated and context-unaware indicators. We further compare our proposed framework, an indicating process, with established indicators and discuss how such information tools on interdisciplinarity can assist science policy practices such as performance-based research funding systems and panel-based peer review processes.
期刊介绍:
The Journal of the Association for Information Science and Technology (JASIST) is a leading international forum for peer-reviewed research in information science. For more than half a century, JASIST has provided intellectual leadership by publishing original research that focuses on the production, discovery, recording, storage, representation, retrieval, presentation, manipulation, dissemination, use, and evaluation of information and on the tools and techniques associated with these processes.
The Journal welcomes rigorous work of an empirical, experimental, ethnographic, conceptual, historical, socio-technical, policy-analytic, or critical-theoretical nature. JASIST also commissions in-depth review articles (“Advances in Information Science”) and reviews of print and other media.