SLn中格的局部到全局刚度(𝕂)

Pub Date : 2020-08-17 DOI:10.5802/aif.3490
Amandine Escalier
{"title":"SLn中格的局部到全局刚度(𝕂)","authors":"Amandine Escalier","doi":"10.5802/aif.3490","DOIUrl":null,"url":null,"abstract":"A vertex-transitive graph $\\mathcal{G}$ is called Local-to-Global rigid if there exists $R>0$ such that every other graph whose balls of radius $R$ are isometric to the balls of radius $R$ in $\\mathcal{G}$ is covered by $\\mathcal{G}$. An example of such a graph is given by the Bruhat-Tits building of $PSL_n(\\mathbb{K})$ with $n\\geq 4$ and $\\mathbb{K}$ a non-Archimedean local field of characteristic zero.. In this paper we extend this rigidity property to a class of graphs quasi-isometric to the building including torsion-free lattices of $SL_n(\\mathbb{K})$. The demonstration is the occasion to prove a result on the local structure of the building. We show that if we fix a $PSL_n(\\mathbb{K})$-orbit in it, then a vertex is uniquely determined by the neighbouring vertices in this orbit.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local-to-Global-rigidity of lattices in SL n (𝕂)\",\"authors\":\"Amandine Escalier\",\"doi\":\"10.5802/aif.3490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A vertex-transitive graph $\\\\mathcal{G}$ is called Local-to-Global rigid if there exists $R>0$ such that every other graph whose balls of radius $R$ are isometric to the balls of radius $R$ in $\\\\mathcal{G}$ is covered by $\\\\mathcal{G}$. An example of such a graph is given by the Bruhat-Tits building of $PSL_n(\\\\mathbb{K})$ with $n\\\\geq 4$ and $\\\\mathbb{K}$ a non-Archimedean local field of characteristic zero.. In this paper we extend this rigidity property to a class of graphs quasi-isometric to the building including torsion-free lattices of $SL_n(\\\\mathbb{K})$. The demonstration is the occasion to prove a result on the local structure of the building. We show that if we fix a $PSL_n(\\\\mathbb{K})$-orbit in it, then a vertex is uniquely determined by the neighbouring vertices in this orbit.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果存在$R>0$,则顶点传递图$\mathcal{G}$称为局部到全局刚性,使得其半径为$R$的球与$\mathcal{G}$中半径为$R的球等距的每一个其他图都被$\mathical{G}$覆盖。这种图的一个例子是由Bruhat-Tits构建的$PSL_n(\mathbb{K})$,其中$n\geq4$和$\mathbb{K}$是特征为零的非阿基米德局部域。。在本文中,我们将这一刚度性质推广到一类拟等距图,该图适用于包含无扭格$SL_n(\mathbb{K})$的建筑物。该演示是证明建筑局部结构结果的机会。我们证明,如果我们在其中固定一个$PSL_n(\mathbb{K})$-轨道,那么一个顶点是由该轨道中的相邻顶点唯一确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Local-to-Global-rigidity of lattices in SL n (𝕂)
A vertex-transitive graph $\mathcal{G}$ is called Local-to-Global rigid if there exists $R>0$ such that every other graph whose balls of radius $R$ are isometric to the balls of radius $R$ in $\mathcal{G}$ is covered by $\mathcal{G}$. An example of such a graph is given by the Bruhat-Tits building of $PSL_n(\mathbb{K})$ with $n\geq 4$ and $\mathbb{K}$ a non-Archimedean local field of characteristic zero.. In this paper we extend this rigidity property to a class of graphs quasi-isometric to the building including torsion-free lattices of $SL_n(\mathbb{K})$. The demonstration is the occasion to prove a result on the local structure of the building. We show that if we fix a $PSL_n(\mathbb{K})$-orbit in it, then a vertex is uniquely determined by the neighbouring vertices in this orbit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信