水循环算法在随机分式规划问题中的应用

IF 0.8 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"水循环算法在随机分式规划问题中的应用","authors":"","doi":"10.4018/ijsir.2022010112","DOIUrl":null,"url":null,"abstract":"This paper presents an application of Water Cycle algorithm (WCA) in solving stochastic programming problems. In particular, Linear stochastic fractional programming problems are considered which are solved by WCA and solutions are compared with Particle Swarm Optimization, Differential Evolution, and Whale Optimization Algorithm and the results from literature. The constraints are handled by converting constrained optimization problem into an unconstrained optimization problem using Augmented Lagrangian Method. Further, a fractional stochastic transportation problem is examined as an application of the stochastic fractional programming problem. In terms of efficiency of algorithms and the ability to find optimal solutions, WCA gives highly significant results in comparison with the other metaheuristic algorithms and the quoted results in the literature which demonstrates that WCA algorithm has 100% convergence in all the problems. Moreover, non-parametric hypothesis tests are performed and which indicates that WCA presents better results as compare to the other algorithms.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Water Cycle algorithm to Stochastic Fractional Programming Problem\",\"authors\":\"\",\"doi\":\"10.4018/ijsir.2022010112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an application of Water Cycle algorithm (WCA) in solving stochastic programming problems. In particular, Linear stochastic fractional programming problems are considered which are solved by WCA and solutions are compared with Particle Swarm Optimization, Differential Evolution, and Whale Optimization Algorithm and the results from literature. The constraints are handled by converting constrained optimization problem into an unconstrained optimization problem using Augmented Lagrangian Method. Further, a fractional stochastic transportation problem is examined as an application of the stochastic fractional programming problem. In terms of efficiency of algorithms and the ability to find optimal solutions, WCA gives highly significant results in comparison with the other metaheuristic algorithms and the quoted results in the literature which demonstrates that WCA algorithm has 100% convergence in all the problems. Moreover, non-parametric hypothesis tests are performed and which indicates that WCA presents better results as compare to the other algorithms.\",\"PeriodicalId\":44265,\"journal\":{\"name\":\"International Journal of Swarm Intelligence Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Swarm Intelligence Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsir.2022010112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsir.2022010112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了水循环算法在求解随机规划问题中的应用。特别考虑了用WCA算法求解的线性随机分式规划问题,并与粒子群算法、差分进化算法和鲸鱼优化算法的求解结果和文献结果进行了比较。利用增广拉格朗日方法将约束优化问题转化为无约束优化问题来处理约束问题。进一步,研究了一个分数阶随机运输问题作为随机分数阶规划问题的应用。在算法的效率和寻找最优解的能力方面,与其他元启发式算法和文献引用的结果相比,WCA给出了非常显著的结果,表明WCA算法在所有问题上都具有100%的收敛性。此外,进行了非参数假设检验,结果表明,与其他算法相比,WCA具有更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Water Cycle algorithm to Stochastic Fractional Programming Problem
This paper presents an application of Water Cycle algorithm (WCA) in solving stochastic programming problems. In particular, Linear stochastic fractional programming problems are considered which are solved by WCA and solutions are compared with Particle Swarm Optimization, Differential Evolution, and Whale Optimization Algorithm and the results from literature. The constraints are handled by converting constrained optimization problem into an unconstrained optimization problem using Augmented Lagrangian Method. Further, a fractional stochastic transportation problem is examined as an application of the stochastic fractional programming problem. In terms of efficiency of algorithms and the ability to find optimal solutions, WCA gives highly significant results in comparison with the other metaheuristic algorithms and the quoted results in the literature which demonstrates that WCA algorithm has 100% convergence in all the problems. Moreover, non-parametric hypothesis tests are performed and which indicates that WCA presents better results as compare to the other algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Swarm Intelligence Research
International Journal of Swarm Intelligence Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.50
自引率
0.00%
发文量
76
期刊介绍: The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信