{"title":"评论:解决不安:一个推理模型的视角","authors":"Chuanhai Liu, Ryan Martin","doi":"10.1214/21-STS765B","DOIUrl":null,"url":null,"abstract":"Here, we demonstrate that the inferential model (IM) framework, unlike the updating rules that Gong and Meng show to be unreliable, provides valid and efficient inferences/prediction while not being susceptible to sure loss. In this sense, the IM framework settles what Gong and Meng characterized as “unsettling.”","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Comment: Settle the Unsettling: An Inferential Models Perspective\",\"authors\":\"Chuanhai Liu, Ryan Martin\",\"doi\":\"10.1214/21-STS765B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we demonstrate that the inferential model (IM) framework, unlike the updating rules that Gong and Meng show to be unreliable, provides valid and efficient inferences/prediction while not being susceptible to sure loss. In this sense, the IM framework settles what Gong and Meng characterized as “unsettling.”\",\"PeriodicalId\":51172,\"journal\":{\"name\":\"Statistical Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-STS765B\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-STS765B","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Comment: Settle the Unsettling: An Inferential Models Perspective
Here, we demonstrate that the inferential model (IM) framework, unlike the updating rules that Gong and Meng show to be unreliable, provides valid and efficient inferences/prediction while not being susceptible to sure loss. In this sense, the IM framework settles what Gong and Meng characterized as “unsettling.”
期刊介绍:
The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.