磁场作用下Fokker-Planck算子的极大估计

IF 1 3区 数学 Q1 MATHEMATICS
Zeinab Karaki
{"title":"磁场作用下Fokker-Planck算子的极大估计","authors":"Zeinab Karaki","doi":"10.4171/JST/369","DOIUrl":null,"url":null,"abstract":"We consider the Fokker-Planck operator with a strong external magnetic field. We show a maximal type estimate on this operator using a nilpotent approach on vector field polynomial operators and including the notion of representation of a Lie algebra. This estimate makes it possible to give an optimal characterization of the domain of the closure of the considered operator.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Maximal estimates for the Fokker–Planck operator with magnetic field\",\"authors\":\"Zeinab Karaki\",\"doi\":\"10.4171/JST/369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Fokker-Planck operator with a strong external magnetic field. We show a maximal type estimate on this operator using a nilpotent approach on vector field polynomial operators and including the notion of representation of a Lie algebra. This estimate makes it possible to give an optimal characterization of the domain of the closure of the considered operator.\",\"PeriodicalId\":48789,\"journal\":{\"name\":\"Journal of Spectral Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JST/369\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JST/369","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑具有强外磁场的福克-普朗克算子。我们使用向量域多项式算子的幂零方法,并包括李代数的表示概念,给出了该算子的最大类型估计。这个估计使得给出所考虑的算子的闭包域的最优特征成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal estimates for the Fokker–Planck operator with magnetic field
We consider the Fokker-Planck operator with a strong external magnetic field. We show a maximal type estimate on this operator using a nilpotent approach on vector field polynomial operators and including the notion of representation of a Lie algebra. This estimate makes it possible to give an optimal characterization of the domain of the closure of the considered operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spectral Theory
Journal of Spectral Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
0.00%
发文量
30
期刊介绍: The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome. The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory. Schrödinger operators, scattering theory and resonances; eigenvalues: perturbation theory, asymptotics and inequalities; quantum graphs, graph Laplacians; pseudo-differential operators and semi-classical analysis; random matrix theory; the Anderson model and other random media; non-self-adjoint matrices and operators, including Toeplitz operators; spectral geometry, including manifolds and automorphic forms; linear and nonlinear differential operators, especially those arising in geometry and physics; orthogonal polynomials; inverse problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信