Wasserstein空间中的弱拓扑和Opial性质及其在梯度流和测地凸泛函的近点算法中的应用

IF 0.6 4区 数学 Q3 MATHEMATICS
E. Naldi, Giuseppe Savaré
{"title":"Wasserstein空间中的弱拓扑和Opial性质及其在梯度流和测地凸泛函的近点算法中的应用","authors":"E. Naldi, Giuseppe Savaré","doi":"10.4171/rlm/955","DOIUrl":null,"url":null,"abstract":"In this paper we discuss how to define an appropriate notion of weak topology in the Wasserstein space $(\\mathcal{P}_2(H),W_2)$ of Borel probability measures with finite quadratic moment on a separable Hilbert space $H$. We will show that such a topology inherits many features of the usual weak topology in Hilbert spaces, in particular the weak closedness of geodesically convex closed sets and the Opial property characterizing weakly convergent sequences. We apply this notion to the approximation of fixed points for a non-expansive map in a weakly closed subset of $\\mathcal{P}_2(H)$ and of minimizers of a lower semicontinuous and geodesically convex functional $\\phi:\\mathcal{P}_2(H)\\to(-\\infty,+\\infty]$ attaining its minimum. In particular, we will show that every solution to the Wasserstein gradient flow of $\\phi$ weakly converge to a minimizer of $\\phi$ as the time goes to $+\\infty$. Similarly, if $\\phi$ is also convex along generalized geodesics, every sequence generated by the proximal point algorithm converges to a minimizer of $\\phi$ with respect to the weak topology of $\\mathcal{P}_2(H)$.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Weak topology and Opial property in Wasserstein spaces, with applications to gradient flows and proximal point algorithms of geodesically convex functionals\",\"authors\":\"E. Naldi, Giuseppe Savaré\",\"doi\":\"10.4171/rlm/955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss how to define an appropriate notion of weak topology in the Wasserstein space $(\\\\mathcal{P}_2(H),W_2)$ of Borel probability measures with finite quadratic moment on a separable Hilbert space $H$. We will show that such a topology inherits many features of the usual weak topology in Hilbert spaces, in particular the weak closedness of geodesically convex closed sets and the Opial property characterizing weakly convergent sequences. We apply this notion to the approximation of fixed points for a non-expansive map in a weakly closed subset of $\\\\mathcal{P}_2(H)$ and of minimizers of a lower semicontinuous and geodesically convex functional $\\\\phi:\\\\mathcal{P}_2(H)\\\\to(-\\\\infty,+\\\\infty]$ attaining its minimum. In particular, we will show that every solution to the Wasserstein gradient flow of $\\\\phi$ weakly converge to a minimizer of $\\\\phi$ as the time goes to $+\\\\infty$. Similarly, if $\\\\phi$ is also convex along generalized geodesics, every sequence generated by the proximal point algorithm converges to a minimizer of $\\\\phi$ with respect to the weak topology of $\\\\mathcal{P}_2(H)$.\",\"PeriodicalId\":54497,\"journal\":{\"name\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rlm/955\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/955","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了如何在Wasserstein空间$(\mathcal)中定义一个适当的弱拓扑概念{P}_2(H) ,W_2)$上具有有限二次矩的Borel概率测度。我们将证明这种拓扑继承了Hilbert空间中常见的弱拓扑的许多特征,特别是测地凸闭集的弱闭性和弱收敛序列的Opial性质。我们将这个概念应用于$\mathcal的弱闭子集中的非扩张映射的不动点的近似{P}_2(H) 下半连续测地凸函数$\phi:\mathcal的极小子的$和{P}_2(H) \到(-\infty,+\infty]$达到其最小值。特别地,我们将证明,随着时间的推移,$\phi$的Wasserstein梯度流的每一个解都弱收敛到$\phi$的极小值。类似地,如果$\phi$沿着广义测地线也是凸的,则由近点算法生成的每个序列相对于$\mathcal{P}_2(H) $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak topology and Opial property in Wasserstein spaces, with applications to gradient flows and proximal point algorithms of geodesically convex functionals
In this paper we discuss how to define an appropriate notion of weak topology in the Wasserstein space $(\mathcal{P}_2(H),W_2)$ of Borel probability measures with finite quadratic moment on a separable Hilbert space $H$. We will show that such a topology inherits many features of the usual weak topology in Hilbert spaces, in particular the weak closedness of geodesically convex closed sets and the Opial property characterizing weakly convergent sequences. We apply this notion to the approximation of fixed points for a non-expansive map in a weakly closed subset of $\mathcal{P}_2(H)$ and of minimizers of a lower semicontinuous and geodesically convex functional $\phi:\mathcal{P}_2(H)\to(-\infty,+\infty]$ attaining its minimum. In particular, we will show that every solution to the Wasserstein gradient flow of $\phi$ weakly converge to a minimizer of $\phi$ as the time goes to $+\infty$. Similarly, if $\phi$ is also convex along generalized geodesics, every sequence generated by the proximal point algorithm converges to a minimizer of $\phi$ with respect to the weak topology of $\mathcal{P}_2(H)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信