{"title":"关于两个基本递归序列的注记","authors":"Reza Farhadian, R. Jakimczuk","doi":"10.2478/amsil-2021-0007","DOIUrl":null,"url":null,"abstract":"Abstract In this note, we establish some general results for two fundamental recursive sequences that are the basis of many well-known recursive sequences, as the Fibonacci sequence, Lucas sequence, Pell sequence, Pell-Lucas sequence, etc. We establish some general limit formulas, where the product of the first n terms of these sequences appears. Furthermore, we prove some general limits that connect these sequences to the number e(≈ 2:71828:::).","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"35 1","pages":"172 - 183"},"PeriodicalIF":0.4000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Note on Two Fundamental Recursive Sequences\",\"authors\":\"Reza Farhadian, R. Jakimczuk\",\"doi\":\"10.2478/amsil-2021-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this note, we establish some general results for two fundamental recursive sequences that are the basis of many well-known recursive sequences, as the Fibonacci sequence, Lucas sequence, Pell sequence, Pell-Lucas sequence, etc. We establish some general limit formulas, where the product of the first n terms of these sequences appears. Furthermore, we prove some general limits that connect these sequences to the number e(≈ 2:71828:::).\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"35 1\",\"pages\":\"172 - 183\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2021-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2021-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract In this note, we establish some general results for two fundamental recursive sequences that are the basis of many well-known recursive sequences, as the Fibonacci sequence, Lucas sequence, Pell sequence, Pell-Lucas sequence, etc. We establish some general limit formulas, where the product of the first n terms of these sequences appears. Furthermore, we prove some general limits that connect these sequences to the number e(≈ 2:71828:::).