{"title":"利用深度学习从无人机图像中自动检测甘蔗作物线","authors":"","doi":"10.1016/j.inpa.2023.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>UAVs (Unmanned Aerial Vehicles) have become increasingly popular in the agricultural sector, promoting and enabling the application of aerial image monitoring in both the scientific and business contexts. Images captured by UAVs are fundamental for precision farming practices. They enable us do a better crop planning, input estimates, early identification and correction of sowing failures, more efficient irrigation systems, among other tasks. Since all these activities deal with low or medium altitude images, automated identification of crop lines plays a crucial role improving these tasks. We address the problem of detecting and segmenting crop lines. We use a Convolutional Neural Network to segment the images, labeling their regions in crop lines or unplanted soil. We also evaluated three traditional semantic networks: U-Net, LinkNet, and PSPNet. We compared each network in four segmentation datasets provided by an expert. We also assessed whether the network’s output requires a post-processing step to improve the segmentation. Results demonstrate the efficiency and feasibility of these networks in the proposed task.</p></div>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000501/pdfft?md5=8bf26d25efc6c7426867b082ac710793&pid=1-s2.0-S2214317323000501-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automated detection of sugarcane crop lines from UAV images using deep learning\",\"authors\":\"\",\"doi\":\"10.1016/j.inpa.2023.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>UAVs (Unmanned Aerial Vehicles) have become increasingly popular in the agricultural sector, promoting and enabling the application of aerial image monitoring in both the scientific and business contexts. Images captured by UAVs are fundamental for precision farming practices. They enable us do a better crop planning, input estimates, early identification and correction of sowing failures, more efficient irrigation systems, among other tasks. Since all these activities deal with low or medium altitude images, automated identification of crop lines plays a crucial role improving these tasks. We address the problem of detecting and segmenting crop lines. We use a Convolutional Neural Network to segment the images, labeling their regions in crop lines or unplanted soil. We also evaluated three traditional semantic networks: U-Net, LinkNet, and PSPNet. We compared each network in four segmentation datasets provided by an expert. We also assessed whether the network’s output requires a post-processing step to improve the segmentation. Results demonstrate the efficiency and feasibility of these networks in the proposed task.</p></div>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214317323000501/pdfft?md5=8bf26d25efc6c7426867b082ac710793&pid=1-s2.0-S2214317323000501-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317323000501\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317323000501","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Automated detection of sugarcane crop lines from UAV images using deep learning
UAVs (Unmanned Aerial Vehicles) have become increasingly popular in the agricultural sector, promoting and enabling the application of aerial image monitoring in both the scientific and business contexts. Images captured by UAVs are fundamental for precision farming practices. They enable us do a better crop planning, input estimates, early identification and correction of sowing failures, more efficient irrigation systems, among other tasks. Since all these activities deal with low or medium altitude images, automated identification of crop lines plays a crucial role improving these tasks. We address the problem of detecting and segmenting crop lines. We use a Convolutional Neural Network to segment the images, labeling their regions in crop lines or unplanted soil. We also evaluated three traditional semantic networks: U-Net, LinkNet, and PSPNet. We compared each network in four segmentation datasets provided by an expert. We also assessed whether the network’s output requires a post-processing step to improve the segmentation. Results demonstrate the efficiency and feasibility of these networks in the proposed task.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.