利用深度学习从无人机图像中自动检测甘蔗作物线

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"利用深度学习从无人机图像中自动检测甘蔗作物线","authors":"","doi":"10.1016/j.inpa.2023.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>UAVs (Unmanned Aerial Vehicles) have become increasingly popular in the agricultural sector, promoting and enabling the application of aerial image monitoring in both the scientific and business contexts. Images captured by UAVs are fundamental for precision farming practices. They enable us do a better crop planning, input estimates, early identification and correction of sowing failures, more efficient irrigation systems, among other tasks. Since all these activities deal with low or medium altitude images, automated identification of crop lines plays a crucial role improving these tasks. We address the problem of detecting and segmenting crop lines. We use a Convolutional Neural Network to segment the images, labeling their regions in crop lines or unplanted soil. We also evaluated three traditional semantic networks: U-Net, LinkNet, and PSPNet. We compared each network in four segmentation datasets provided by an expert. We also assessed whether the network’s output requires a post-processing step to improve the segmentation. Results demonstrate the efficiency and feasibility of these networks in the proposed task.</p></div>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000501/pdfft?md5=8bf26d25efc6c7426867b082ac710793&pid=1-s2.0-S2214317323000501-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automated detection of sugarcane crop lines from UAV images using deep learning\",\"authors\":\"\",\"doi\":\"10.1016/j.inpa.2023.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>UAVs (Unmanned Aerial Vehicles) have become increasingly popular in the agricultural sector, promoting and enabling the application of aerial image monitoring in both the scientific and business contexts. Images captured by UAVs are fundamental for precision farming practices. They enable us do a better crop planning, input estimates, early identification and correction of sowing failures, more efficient irrigation systems, among other tasks. Since all these activities deal with low or medium altitude images, automated identification of crop lines plays a crucial role improving these tasks. We address the problem of detecting and segmenting crop lines. We use a Convolutional Neural Network to segment the images, labeling their regions in crop lines or unplanted soil. We also evaluated three traditional semantic networks: U-Net, LinkNet, and PSPNet. We compared each network in four segmentation datasets provided by an expert. We also assessed whether the network’s output requires a post-processing step to improve the segmentation. Results demonstrate the efficiency and feasibility of these networks in the proposed task.</p></div>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214317323000501/pdfft?md5=8bf26d25efc6c7426867b082ac710793&pid=1-s2.0-S2214317323000501-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317323000501\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317323000501","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无人驾驶飞行器(UAVs)在农业领域越来越受欢迎,促进了航空图像监测在科学和商业领域的应用。无人机拍摄的图像是精准农业实践的基础。它们使我们能够更好地进行作物规划、投入估算、早期识别和纠正播种失败、提高灌溉系统的效率以及完成其他任务。由于所有这些活动都要处理低空或中空图像,因此自动识别作物线对改善这些任务起着至关重要的作用。我们要解决的问题是检测和分割作物线。我们使用卷积神经网络对图像进行分割,将其区域标记为作物线或未种植的土壤。我们还评估了三种传统语义网络:U-Net、LinkNet 和 PSPNet。我们在专家提供的四个分割数据集中对每个网络进行了比较。我们还评估了网络输出是否需要后处理步骤来改进分割。结果证明了这些网络在拟议任务中的效率和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated detection of sugarcane crop lines from UAV images using deep learning

UAVs (Unmanned Aerial Vehicles) have become increasingly popular in the agricultural sector, promoting and enabling the application of aerial image monitoring in both the scientific and business contexts. Images captured by UAVs are fundamental for precision farming practices. They enable us do a better crop planning, input estimates, early identification and correction of sowing failures, more efficient irrigation systems, among other tasks. Since all these activities deal with low or medium altitude images, automated identification of crop lines plays a crucial role improving these tasks. We address the problem of detecting and segmenting crop lines. We use a Convolutional Neural Network to segment the images, labeling their regions in crop lines or unplanted soil. We also evaluated three traditional semantic networks: U-Net, LinkNet, and PSPNet. We compared each network in four segmentation datasets provided by an expert. We also assessed whether the network’s output requires a post-processing step to improve the segmentation. Results demonstrate the efficiency and feasibility of these networks in the proposed task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信