弹性半平面上poincar_3 - steklov算子的正确定性

IF 0.3 Q4 MECHANICS
A. A. Bobylev
{"title":"弹性半平面上poincar_3 - steklov算子的正确定性","authors":"A. A. Bobylev","doi":"10.3103/S0027133021060029","DOIUrl":null,"url":null,"abstract":"<p>The Poincaré–Steklov operator that maps normal stresses to\nnormal displacements on a part of a half-plane boundary is\nstudied. A boundary value problem is formulated to introduce the\nassociated Poincaré–Steklov operator. An integral\nrepresentation based on the solution to the Flamant problem for\nan elastic half-plane subjected to a concentrated normal force is\ngiven for the operator under consideration. It is found that the\nproperties of the Poincaré–Steklov operator depend on the\nchoice of kinematic conditions specifying the rigid-body\ndisplacements of the half-plane. Positive definiteness conditions\nof the Poincaré–Steklov operator are obtained. It is shown that\na suitable scaling of the computational domain can be used to\nprovide the positive definiteness of this operator.</p>","PeriodicalId":710,"journal":{"name":"Moscow University Mechanics Bulletin","volume":"76 6","pages":"156 - 162"},"PeriodicalIF":0.3000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Positive Definiteness of the Poincaré–Steklov Operator for Elastic Half-Plane\",\"authors\":\"A. A. Bobylev\",\"doi\":\"10.3103/S0027133021060029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Poincaré–Steklov operator that maps normal stresses to\\nnormal displacements on a part of a half-plane boundary is\\nstudied. A boundary value problem is formulated to introduce the\\nassociated Poincaré–Steklov operator. An integral\\nrepresentation based on the solution to the Flamant problem for\\nan elastic half-plane subjected to a concentrated normal force is\\ngiven for the operator under consideration. It is found that the\\nproperties of the Poincaré–Steklov operator depend on the\\nchoice of kinematic conditions specifying the rigid-body\\ndisplacements of the half-plane. Positive definiteness conditions\\nof the Poincaré–Steklov operator are obtained. It is shown that\\na suitable scaling of the computational domain can be used to\\nprovide the positive definiteness of this operator.</p>\",\"PeriodicalId\":710,\"journal\":{\"name\":\"Moscow University Mechanics Bulletin\",\"volume\":\"76 6\",\"pages\":\"156 - 162\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027133021060029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027133021060029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了将半平面边界上的法向应力映射为法向位移的poincar - steklov算子。建立了一个边值问题来引入相关的poincar_3 - steklov算子。给出了考虑算子在集中法向力作用下的弹性半平面Flamant问题的解的积分表示。研究发现,poincar - - steklov算子的性质取决于指定半平面刚体位移的运动条件的选择。得到了poincar_3 - steklov算子的正确定性条件。结果表明,计算域的适当缩放可以提供该算子的正确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Positive Definiteness of the Poincaré–Steklov Operator for Elastic Half-Plane

The Poincaré–Steklov operator that maps normal stresses to normal displacements on a part of a half-plane boundary is studied. A boundary value problem is formulated to introduce the associated Poincaré–Steklov operator. An integral representation based on the solution to the Flamant problem for an elastic half-plane subjected to a concentrated normal force is given for the operator under consideration. It is found that the properties of the Poincaré–Steklov operator depend on the choice of kinematic conditions specifying the rigid-body displacements of the half-plane. Positive definiteness conditions of the Poincaré–Steklov operator are obtained. It is shown that a suitable scaling of the computational domain can be used to provide the positive definiteness of this operator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: Moscow University Mechanics Bulletin  is the journal of scientific publications, reflecting the most important areas of mechanics at Lomonosov Moscow State University. The journal is dedicated to research in theoretical mechanics, applied mechanics and motion control, hydrodynamics, aeromechanics, gas and wave dynamics, theory of elasticity, theory of elasticity and mechanics of composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信