一种将柯比图转换为三分图的算法

IF 0.7 3区 数学 Q2 MATHEMATICS
Willi Kepplinger
{"title":"一种将柯比图转换为三分图的算法","authors":"Willi Kepplinger","doi":"10.2140/pjm.2022.318.109","DOIUrl":null,"url":null,"abstract":"We present an algorithm taking a Kirby diagram of a closed oriented $4$-manifold to a trisection diagram of the same manifold. This algorithm provides us with a large number of examples for trisection diagrams of closed oriented $4$-manifolds since many Kirby-diagrammatic descriptions of closed oriented $4$-manifolds are known. That being said, the algorithm does not necessarily provide particularly efficient trisection diagrams. We also extend this algorithm to work for the non-orientable case.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An algorithm taking Kirby diagrams to trisection diagrams\",\"authors\":\"Willi Kepplinger\",\"doi\":\"10.2140/pjm.2022.318.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm taking a Kirby diagram of a closed oriented $4$-manifold to a trisection diagram of the same manifold. This algorithm provides us with a large number of examples for trisection diagrams of closed oriented $4$-manifolds since many Kirby-diagrammatic descriptions of closed oriented $4$-manifolds are known. That being said, the algorithm does not necessarily provide particularly efficient trisection diagrams. We also extend this algorithm to work for the non-orientable case.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.318.109\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.318.109","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种算法,将一个封闭的面向$4$流形的Kirby图转化为相同流形的三切分图。该算法为我们提供了大量的面向闭合$4$流形的三角图示例,因为许多面向闭合$4$流形的kirby图描述是已知的。也就是说,该算法不一定提供特别有效的三切分图。我们还将该算法扩展到非定向情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algorithm taking Kirby diagrams to trisection diagrams
We present an algorithm taking a Kirby diagram of a closed oriented $4$-manifold to a trisection diagram of the same manifold. This algorithm provides us with a large number of examples for trisection diagrams of closed oriented $4$-manifolds since many Kirby-diagrammatic descriptions of closed oriented $4$-manifolds are known. That being said, the algorithm does not necessarily provide particularly efficient trisection diagrams. We also extend this algorithm to work for the non-orientable case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信