克里格绘制的乌克兰深部热流图

IF 0.6 Q4 GEOCHEMISTRY & GEOPHYSICS
V. Gordienko, I. Gordienko, O. V. Zavgorodnaya
{"title":"克里格绘制的乌克兰深部热流图","authors":"V. Gordienko, I. Gordienko, O. V. Zavgorodnaya","doi":"10.24028/gj.v44i3.261968","DOIUrl":null,"url":null,"abstract":"The article discusses the method of processing the material used to compile a deep heat flow (HF) map on the territory of Ukraine. We are talking specifically about the deep (corrected) HF, since its error (determined by the differences in values at close points) is noticeably less than the observed one and only its values can be used to construct (as a rule, to control) thermal models of the Earth's crust and upper mantle. Despite the unique study of Ukraine on this parameter, which has been going on for almost 60 years, there are still significant fragments of the territory where the HF has not been determined. This is due to the lack of boreholes in such areas suitable for temperature measurements in the required depth interval with the required accuracy. Of course, any method of processing experimental material in areas adjacent to such «white spots» cannot completely replace a full-fledged study of HF within their boundaries. Nevertheless, the available geostatistical methods allow, by processing the existing grid of results, to ensure the construction of a map of the entire study area. In our case, we used the kriging technique. Kriging is a form of generalized linear regression to formulate an optimal spatial estimate in terms of minimum mean square error. The method works best within the shell defined by peripheral data. Within areas with a stable «wavelength» of HF anomalies, it is possible to fill in the gaps in the map without any problems. Naturally, with a noticeable smoothing of the field variations. Most of the processed map fragments belonged to this type. A more complicated situation was encountered at the southwestern contacts of the Kirovograd and Donbas anomalies. It is likely that part of the field structure (local intense anomalies) was not reproduced. Nevertheless, in general, the control carried out showed that the HF error in the assessment points, as a rule, does not exceed the experimental errors. The work done gives completeness to the results of research of the deep heat flow on the territory of Ukraine. It should also be noted that the identified distribution of HF within the former «white spots» reveals reserves of geothermal energy twice as much as the total reserves of combustible minerals in Ukraine.","PeriodicalId":54141,"journal":{"name":"Geofizicheskiy Zhurnal-Geophysical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kriging of Ukraine’s deep heat flow map\",\"authors\":\"V. Gordienko, I. Gordienko, O. V. Zavgorodnaya\",\"doi\":\"10.24028/gj.v44i3.261968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article discusses the method of processing the material used to compile a deep heat flow (HF) map on the territory of Ukraine. We are talking specifically about the deep (corrected) HF, since its error (determined by the differences in values at close points) is noticeably less than the observed one and only its values can be used to construct (as a rule, to control) thermal models of the Earth's crust and upper mantle. Despite the unique study of Ukraine on this parameter, which has been going on for almost 60 years, there are still significant fragments of the territory where the HF has not been determined. This is due to the lack of boreholes in such areas suitable for temperature measurements in the required depth interval with the required accuracy. Of course, any method of processing experimental material in areas adjacent to such «white spots» cannot completely replace a full-fledged study of HF within their boundaries. Nevertheless, the available geostatistical methods allow, by processing the existing grid of results, to ensure the construction of a map of the entire study area. In our case, we used the kriging technique. Kriging is a form of generalized linear regression to formulate an optimal spatial estimate in terms of minimum mean square error. The method works best within the shell defined by peripheral data. Within areas with a stable «wavelength» of HF anomalies, it is possible to fill in the gaps in the map without any problems. Naturally, with a noticeable smoothing of the field variations. Most of the processed map fragments belonged to this type. A more complicated situation was encountered at the southwestern contacts of the Kirovograd and Donbas anomalies. It is likely that part of the field structure (local intense anomalies) was not reproduced. Nevertheless, in general, the control carried out showed that the HF error in the assessment points, as a rule, does not exceed the experimental errors. The work done gives completeness to the results of research of the deep heat flow on the territory of Ukraine. It should also be noted that the identified distribution of HF within the former «white spots» reveals reserves of geothermal energy twice as much as the total reserves of combustible minerals in Ukraine.\",\"PeriodicalId\":54141,\"journal\":{\"name\":\"Geofizicheskiy Zhurnal-Geophysical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofizicheskiy Zhurnal-Geophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24028/gj.v44i3.261968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofizicheskiy Zhurnal-Geophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24028/gj.v44i3.261968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了在乌克兰境内编制深热流(HF)地图所用材料的处理方法。我们具体讨论的是深层(校正)HF,因为它的误差(由近点处的值差异决定)明显小于观测值,而且只有它的值可以用来构建(通常是控制)地壳和上地幔的热模型。尽管乌克兰对这一参数进行了近60年的独特研究,但仍有大量领土碎片尚未确定HF。这是由于在这些地区缺乏适合在所需深度间隔内进行温度测量并具有所需精度的钻孔。当然,在这些“白点”附近处理实验材料的任何方法都不能完全取代在其边界内对HF的全面研究。然而,现有的地质统计方法可以通过处理现有的结果网格,确保绘制整个研究地区的地图。在我们的例子中,我们使用了克里格技术。Kriging是广义线性回归的一种形式,以最小均方误差来制定最优的空间估计。该方法在由外设数据定义的shell中效果最好。在高频异常具有稳定“波长”的区域内,可以在没有任何问题的情况下填补地图中的空白。自然地,有一个明显的平滑场变化。大多数处理过的地图片段都属于这种类型。在基罗沃格勒和顿巴斯异常点的西南接壤处遇到了更为复杂的情况。很可能是部分磁场结构(局部强异常)没有重现。然而,总的来说,进行的控制表明,评估点的HF误差一般不会超过实验误差。所做的工作使乌克兰境内深热流的研究结果更加完整。还应指出,在前“白点”内确定的HF分布表明,地热能储量是乌克兰可燃矿物总储量的两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kriging of Ukraine’s deep heat flow map
The article discusses the method of processing the material used to compile a deep heat flow (HF) map on the territory of Ukraine. We are talking specifically about the deep (corrected) HF, since its error (determined by the differences in values at close points) is noticeably less than the observed one and only its values can be used to construct (as a rule, to control) thermal models of the Earth's crust and upper mantle. Despite the unique study of Ukraine on this parameter, which has been going on for almost 60 years, there are still significant fragments of the territory where the HF has not been determined. This is due to the lack of boreholes in such areas suitable for temperature measurements in the required depth interval with the required accuracy. Of course, any method of processing experimental material in areas adjacent to such «white spots» cannot completely replace a full-fledged study of HF within their boundaries. Nevertheless, the available geostatistical methods allow, by processing the existing grid of results, to ensure the construction of a map of the entire study area. In our case, we used the kriging technique. Kriging is a form of generalized linear regression to formulate an optimal spatial estimate in terms of minimum mean square error. The method works best within the shell defined by peripheral data. Within areas with a stable «wavelength» of HF anomalies, it is possible to fill in the gaps in the map without any problems. Naturally, with a noticeable smoothing of the field variations. Most of the processed map fragments belonged to this type. A more complicated situation was encountered at the southwestern contacts of the Kirovograd and Donbas anomalies. It is likely that part of the field structure (local intense anomalies) was not reproduced. Nevertheless, in general, the control carried out showed that the HF error in the assessment points, as a rule, does not exceed the experimental errors. The work done gives completeness to the results of research of the deep heat flow on the territory of Ukraine. It should also be noted that the identified distribution of HF within the former «white spots» reveals reserves of geothermal energy twice as much as the total reserves of combustible minerals in Ukraine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geofizicheskiy Zhurnal-Geophysical Journal
Geofizicheskiy Zhurnal-Geophysical Journal GEOCHEMISTRY & GEOPHYSICS-
自引率
60.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信