{"title":"挫折效应对直流SQUID临界电流的影响","authors":"I. Askerzade","doi":"10.3390/condmat8030065","DOIUrl":null,"url":null,"abstract":"In this paper, we conducted the calculation of the critical current of DC SQUID based on the Josephson junction on a multi-band superconductor with frustration effect. It is shown that the critical current of DC SQUID on the frustrated multi-band superconductor with a small geometrical inductance of the loop is determined by the supercurrent amplitude in different channels and by the external magnetic field. In the case of a DC SQUID with high inductance, frustration effects can be ignored.","PeriodicalId":10665,"journal":{"name":"Condensed Matter","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Frustration Effects on the Critical Current of DC SQUID\",\"authors\":\"I. Askerzade\",\"doi\":\"10.3390/condmat8030065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we conducted the calculation of the critical current of DC SQUID based on the Josephson junction on a multi-band superconductor with frustration effect. It is shown that the critical current of DC SQUID on the frustrated multi-band superconductor with a small geometrical inductance of the loop is determined by the supercurrent amplitude in different channels and by the external magnetic field. In the case of a DC SQUID with high inductance, frustration effects can be ignored.\",\"PeriodicalId\":10665,\"journal\":{\"name\":\"Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/condmat8030065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/condmat8030065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Influence of Frustration Effects on the Critical Current of DC SQUID
In this paper, we conducted the calculation of the critical current of DC SQUID based on the Josephson junction on a multi-band superconductor with frustration effect. It is shown that the critical current of DC SQUID on the frustrated multi-band superconductor with a small geometrical inductance of the loop is determined by the supercurrent amplitude in different channels and by the external magnetic field. In the case of a DC SQUID with high inductance, frustration effects can be ignored.