基于爆炸变化检测的剩余使用寿命估算——轴承振动分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Diana Barraza, V´ıctor G. Tercero-G´omez, A. Cordero-Franco, M. Beruvides
{"title":"基于爆炸变化检测的剩余使用寿命估算——轴承振动分析","authors":"Diana Barraza, V´ıctor G. Tercero-G´omez, A. Cordero-Franco, M. Beruvides","doi":"10.36001/IJPHM.2020.V11I1.2609","DOIUrl":null,"url":null,"abstract":"The monitoring of condition variables for maintenance purposes is a growing trend amongst researchers and practitioners where decisions are based on degradation levels. The two approaches in Condition-Based Maintenance (CBM) are diagnosing the level of degradation (diagnostics) or predicting when a certain level of degradation will be reached (prognostics). Using diagnostics determines when it is necessary to perform maintenance, but it rarely allows for estimation of future degradation. In the second case, prognostics does allow for degradation and failure prediction, however, its major drawback lies in when to perform the analysis, and exactly what information should be used for predictions. This encumbrance is due to previous studies that have shown that degradation variable could undergo a change that misleads these calculations. This paper addresses the issue of identifying explosive changes in condition variables, using Control Charts, to determine when to perform a new model fitting in order to obtain more accurate Remaining Useful Life (RUL) estimations. The diagnostic-prognostic methodology allows for discarding pre-change observations to avoid contamination in condition prediction. In addition the performance of the integration methodology is compared against adaptive autoregressive (AR) models. Results show that using only the observations acquired after the out-of-control signal produces more accurate RUL estimations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remaining Useful Life Estimation Based on Detection of Explosive Changes: Analysis of Bearing Vibration\",\"authors\":\"Diana Barraza, V´ıctor G. Tercero-G´omez, A. Cordero-Franco, M. Beruvides\",\"doi\":\"10.36001/IJPHM.2020.V11I1.2609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The monitoring of condition variables for maintenance purposes is a growing trend amongst researchers and practitioners where decisions are based on degradation levels. The two approaches in Condition-Based Maintenance (CBM) are diagnosing the level of degradation (diagnostics) or predicting when a certain level of degradation will be reached (prognostics). Using diagnostics determines when it is necessary to perform maintenance, but it rarely allows for estimation of future degradation. In the second case, prognostics does allow for degradation and failure prediction, however, its major drawback lies in when to perform the analysis, and exactly what information should be used for predictions. This encumbrance is due to previous studies that have shown that degradation variable could undergo a change that misleads these calculations. This paper addresses the issue of identifying explosive changes in condition variables, using Control Charts, to determine when to perform a new model fitting in order to obtain more accurate Remaining Useful Life (RUL) estimations. The diagnostic-prognostic methodology allows for discarding pre-change observations to avoid contamination in condition prediction. In addition the performance of the integration methodology is compared against adaptive autoregressive (AR) models. Results show that using only the observations acquired after the out-of-control signal produces more accurate RUL estimations.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/IJPHM.2020.V11I1.2609\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/IJPHM.2020.V11I1.2609","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

监测状态变量的维护目的是一个日益增长的趋势,在研究人员和从业人员的决策是基于退化水平。基于状态的维护(CBM)中的两种方法是诊断退化水平(诊断)或预测何时达到一定程度的退化(预后)。使用诊断可以确定何时需要执行维护,但很少允许估计未来的降级。在第二种情况下,预测确实允许降级和故障预测,然而,它的主要缺点在于何时执行分析,以及应该使用哪些信息进行预测。这种阻碍是由于以前的研究表明,退化变量可能会发生变化,从而误导了这些计算。本文解决了识别条件变量的爆炸性变化的问题,使用控制图来确定何时执行新的模型拟合,以获得更准确的剩余使用寿命(RUL)估计。诊断-预后方法允许丢弃变化前的观察,以避免在状态预测中受到污染。此外,还将集成方法的性能与自适应自回归(AR)模型进行了比较。结果表明,仅使用失控信号后的观测值可以获得更准确的RUL估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remaining Useful Life Estimation Based on Detection of Explosive Changes: Analysis of Bearing Vibration
The monitoring of condition variables for maintenance purposes is a growing trend amongst researchers and practitioners where decisions are based on degradation levels. The two approaches in Condition-Based Maintenance (CBM) are diagnosing the level of degradation (diagnostics) or predicting when a certain level of degradation will be reached (prognostics). Using diagnostics determines when it is necessary to perform maintenance, but it rarely allows for estimation of future degradation. In the second case, prognostics does allow for degradation and failure prediction, however, its major drawback lies in when to perform the analysis, and exactly what information should be used for predictions. This encumbrance is due to previous studies that have shown that degradation variable could undergo a change that misleads these calculations. This paper addresses the issue of identifying explosive changes in condition variables, using Control Charts, to determine when to perform a new model fitting in order to obtain more accurate Remaining Useful Life (RUL) estimations. The diagnostic-prognostic methodology allows for discarding pre-change observations to avoid contamination in condition prediction. In addition the performance of the integration methodology is compared against adaptive autoregressive (AR) models. Results show that using only the observations acquired after the out-of-control signal produces more accurate RUL estimations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信