变指数齐次Neumann边界条件下非线性抛物型问题的熵解

IF 0.5 Q3 MATHEMATICS
U. Traoré
{"title":"变指数齐次Neumann边界条件下非线性抛物型问题的熵解","authors":"U. Traoré","doi":"10.4067/s0719-06462021000300385","DOIUrl":null,"url":null,"abstract":"In this paper we prove the existence and uniqueness of an entropy solution for a non-linear parabolic equation with homogeneous Neumann boundary condition and initial data in L 1 . By a time discretization technique we analyze the existence, uniqueness and stability questions. The functional setting involves Lebesgue and Sobolev spaces with variable exponents.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy solution for a nonlinear parabolic problem with homogeneous Neumann boundary condition involving variable exponents\",\"authors\":\"U. Traoré\",\"doi\":\"10.4067/s0719-06462021000300385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove the existence and uniqueness of an entropy solution for a non-linear parabolic equation with homogeneous Neumann boundary condition and initial data in L 1 . By a time discretization technique we analyze the existence, uniqueness and stability questions. The functional setting involves Lebesgue and Sobolev spaces with variable exponents.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/s0719-06462021000300385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462021000300385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了具有齐次Neumann边界条件和L1中初始数据的非线性抛物型方程熵解的存在性和唯一性。通过时间离散化技术,我们分析了存在性、唯一性和稳定性问题。函数设置涉及具有可变指数的Lebesgue和Sobolev空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy solution for a nonlinear parabolic problem with homogeneous Neumann boundary condition involving variable exponents
In this paper we prove the existence and uniqueness of an entropy solution for a non-linear parabolic equation with homogeneous Neumann boundary condition and initial data in L 1 . By a time discretization technique we analyze the existence, uniqueness and stability questions. The functional setting involves Lebesgue and Sobolev spaces with variable exponents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信