{"title":"塑性剪切过程中溶解沉淀物的分裂:相场研究","authors":"K. Ammar, B. Appolaire, S. Forest","doi":"10.5802/crphys.82","DOIUrl":null,"url":null,"abstract":"Using a phase field model, we have investigated the role of plasticity on the morphological evolution of a precipitate during its diffusion-controlled dissolution, when submitted to shear loading. It is shown that the plastic strain pattern in the matrix strongly influences the local dissolution rate and consequently the final shape of the precipitate. Finally, it is demonstrated that for sufficiently fast and intense shear loadings, plasticity can induce splitting of the precipitate: this process could explain why small precipitates are observed in shear bands in Ti alloys forged parts.","PeriodicalId":50650,"journal":{"name":"Comptes Rendus Physique","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Splitting of dissolving precipitates during plastic shear: A phase field study\",\"authors\":\"K. Ammar, B. Appolaire, S. Forest\",\"doi\":\"10.5802/crphys.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a phase field model, we have investigated the role of plasticity on the morphological evolution of a precipitate during its diffusion-controlled dissolution, when submitted to shear loading. It is shown that the plastic strain pattern in the matrix strongly influences the local dissolution rate and consequently the final shape of the precipitate. Finally, it is demonstrated that for sufficiently fast and intense shear loadings, plasticity can induce splitting of the precipitate: this process could explain why small precipitates are observed in shear bands in Ti alloys forged parts.\",\"PeriodicalId\":50650,\"journal\":{\"name\":\"Comptes Rendus Physique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Physique\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5802/crphys.82\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Physique","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5802/crphys.82","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Splitting of dissolving precipitates during plastic shear: A phase field study
Using a phase field model, we have investigated the role of plasticity on the morphological evolution of a precipitate during its diffusion-controlled dissolution, when submitted to shear loading. It is shown that the plastic strain pattern in the matrix strongly influences the local dissolution rate and consequently the final shape of the precipitate. Finally, it is demonstrated that for sufficiently fast and intense shear loadings, plasticity can induce splitting of the precipitate: this process could explain why small precipitates are observed in shear bands in Ti alloys forged parts.
期刊介绍:
The Comptes Rendus - Physique are an open acess and peer-reviewed electronic scientific journal publishing original research article. It is one of seven journals published by the Académie des sciences.
Its objective is to enable researchers to quickly share their work with the international scientific community.
The Comptes Rendus - Physique also publish journal articles, thematic issues and articles on the history of the Académie des sciences and its current scientific activity.
From 2020 onwards, the journal''s policy is based on a diamond open access model: no fees are charged to authors to publish or to readers to access articles. Thus, articles are accessible immediately, free of charge and permanently after publication.
The Comptes Rendus - Physique (8 issues per year) cover all fields of physics and astrophysics and propose dossiers. Thanks to this formula, readers of physics and astrophysics will find, in each issue, the presentation of a subject in particularly rapid development. The authors are chosen from among the most active researchers in the field and each file is coordinated by a guest editor, ensuring that the most recent and significant results are taken into account. In order to preserve the historical purpose of the Comptes Rendus, these issues also leave room for the usual notes and clarifications. The articles are written mainly in English.