双曲函数中广义apostoll - bernoulli, apostoll - euler和apostoll - genocchi多项式的渐近逼近

IF 1 Q1 MATHEMATICS
C. Corcino, R. Corcino
{"title":"双曲函数中广义apostoll - bernoulli, apostoll - euler和apostoll - genocchi多项式的渐近逼近","authors":"C. Corcino, R. Corcino","doi":"10.29020/nybg.ejpam.v16i2.4703","DOIUrl":null,"url":null,"abstract":"Asymptotic approximation formulas for polynomials of the type Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi with integer order and real parameters are obtained via hyperbolic functions. The derivation of the formulas is done using the principle of saddle point and expansion of appropriate hyperbolic function about a saddle point.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic approximations for Generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi Polynomials in terms of Hyperbolic Functions\",\"authors\":\"C. Corcino, R. Corcino\",\"doi\":\"10.29020/nybg.ejpam.v16i2.4703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asymptotic approximation formulas for polynomials of the type Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi with integer order and real parameters are obtained via hyperbolic functions. The derivation of the formulas is done using the principle of saddle point and expansion of appropriate hyperbolic function about a saddle point.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i2.4703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i2.4703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用双曲函数得到了整阶实参数Apostol Bernoulli、Apostol Euler和Apostol Genocchi多项式的渐近逼近公式。利用鞍点原理和适当的双曲函数关于鞍点的展开式,推导了这些公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic approximations for Generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi Polynomials in terms of Hyperbolic Functions
Asymptotic approximation formulas for polynomials of the type Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi with integer order and real parameters are obtained via hyperbolic functions. The derivation of the formulas is done using the principle of saddle point and expansion of appropriate hyperbolic function about a saddle point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信