Tits多边形

IF 2 4区 数学 Q1 MATHEMATICS
B. Mühlherr, R. Weiss, Holger P. Petersson
{"title":"Tits多边形","authors":"B. Mühlherr, R. Weiss, Holger P. Petersson","doi":"10.1090/memo/1352","DOIUrl":null,"url":null,"abstract":"<p>We introduce the notion of a Tits polygon, a generalization of the notion of a Moufang polygon, and show that Tits polygons arise in a natural way from certain configurations of parabolic subgroups in an arbitrary spherical buildings satisfying the Moufang condition. We establish numerous basic properties of Tits polygons and characterize a large class of Tits hexagons in terms of Jordan algebras. We apply this classification to give a “rank <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>” presentation for the group of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-rational points of an arbitrary exceptional simple group of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-rank at least <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"4\">\n <mml:semantics>\n <mml:mn>4</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and to determine defining relations for the group of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-rational points of an an arbitrary group of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-rank <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\">\n <mml:semantics>\n <mml:mn>1</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and absolute type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>D</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">D_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 6\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>6</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">E_6</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 7\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>7</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">E_7</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 8\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>8</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">E_8</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> associated to the unique vertex of the Dynkin diagram that is not orthogonal to the highest root. All of these results are over a field of arbitrary characteristic.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tits polygons\",\"authors\":\"B. Mühlherr, R. Weiss, Holger P. Petersson\",\"doi\":\"10.1090/memo/1352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the notion of a Tits polygon, a generalization of the notion of a Moufang polygon, and show that Tits polygons arise in a natural way from certain configurations of parabolic subgroups in an arbitrary spherical buildings satisfying the Moufang condition. We establish numerous basic properties of Tits polygons and characterize a large class of Tits hexagons in terms of Jordan algebras. We apply this classification to give a “rank <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\">\\n <mml:semantics>\\n <mml:mn>2</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>” presentation for the group of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-rational points of an arbitrary exceptional simple group of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-rank at least <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"4\\\">\\n <mml:semantics>\\n <mml:mn>4</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">4</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and to determine defining relations for the group of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-rational points of an an arbitrary group of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-rank <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1\\\">\\n <mml:semantics>\\n <mml:mn>1</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and absolute type <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D 4\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>D</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">D_4</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 6\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>6</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_6</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 7\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>7</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_7</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> or <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 8\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>8</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_8</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> associated to the unique vertex of the Dynkin diagram that is not orthogonal to the highest root. All of these results are over a field of arbitrary characteristic.</p>\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1352\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1352","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们引入了Tits多边形的概念,推广了Moufang多边形的概念,并证明了Tits多边形是由满足Moufang条件的任意球形建筑物上的抛物子群的某些构型自然产生的。我们建立了Tits多边形的许多基本性质,并用Jordan代数刻画了一大类Tits六边形。我们应用这一分类给出了F F -秩至少为4 4的任意例外简单群F F -有理点群的“秩2”表示,并确定了F F -秩1 1的任意群F F -有理点群与绝对类型D 4 D_4, E 6 E_6,e7e_7或e8e_8与Dynkin图中唯一的不与最高根正交的顶点相关联。所有这些结果都是在一个具有任意特征的场上得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tits polygons

We introduce the notion of a Tits polygon, a generalization of the notion of a Moufang polygon, and show that Tits polygons arise in a natural way from certain configurations of parabolic subgroups in an arbitrary spherical buildings satisfying the Moufang condition. We establish numerous basic properties of Tits polygons and characterize a large class of Tits hexagons in terms of Jordan algebras. We apply this classification to give a “rank  2 2 ” presentation for the group of F F -rational points of an arbitrary exceptional simple group of F F -rank at least  4 4 and to determine defining relations for the group of F F -rational points of an an arbitrary group of F F -rank  1 1 and absolute type D 4 D_4 , E 6 E_6 , E 7 E_7 or E 8 E_8 associated to the unique vertex of the Dynkin diagram that is not orthogonal to the highest root. All of these results are over a field of arbitrary characteristic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信