动态多因素模型在中国A股的应用研究

IF 0.6 Q4 BUSINESS, FINANCE
Ying-hua Lan
{"title":"动态多因素模型在中国A股的应用研究","authors":"Ying-hua Lan","doi":"10.3905/joi.2022.1.223","DOIUrl":null,"url":null,"abstract":"This article analyzes the factor investment landscape in China A-shares and explores a feasible solution to construct an adaptive multifactor model for stock selection aiming at stable outperformance over the benchmark CSI 300 Index. A diversified factor database, with more than 60 factors across five factor groups, is constructed for factor behavioral study and model preparation. After analyzing and extracting common time-series and cross-sectional factor predictive power characteristics, a dynamic model with monthly factor selection and tilting based on factor predictive power momentum, persistency, and crowdedness measures is proposed and backtested. From January 2013–March 2020, the proposed model has an information ratio of 1.1152 net of transaction costs—a strong outperformance versus the static models and the simple dynamic model using solely factor momentum. This research offers directional insights into multifactor model applications in the A-shares market.","PeriodicalId":45504,"journal":{"name":"Journal of Investing","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Dynamic Multifactor Model Application In China A-Shares\",\"authors\":\"Ying-hua Lan\",\"doi\":\"10.3905/joi.2022.1.223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article analyzes the factor investment landscape in China A-shares and explores a feasible solution to construct an adaptive multifactor model for stock selection aiming at stable outperformance over the benchmark CSI 300 Index. A diversified factor database, with more than 60 factors across five factor groups, is constructed for factor behavioral study and model preparation. After analyzing and extracting common time-series and cross-sectional factor predictive power characteristics, a dynamic model with monthly factor selection and tilting based on factor predictive power momentum, persistency, and crowdedness measures is proposed and backtested. From January 2013–March 2020, the proposed model has an information ratio of 1.1152 net of transaction costs—a strong outperformance versus the static models and the simple dynamic model using solely factor momentum. This research offers directional insights into multifactor model applications in the A-shares market.\",\"PeriodicalId\":45504,\"journal\":{\"name\":\"Journal of Investing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Investing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/joi.2022.1.223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Investing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/joi.2022.1.223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了中国A股的因子投资格局,并探索了一种可行的解决方案,以构建一个自适应的多因子选股模型,目标是稳定跑赢基准沪深300指数。构建了一个多元化的因子数据库,包含五个因子组的60多个因子,用于因子行为研究和模型准备。在分析和提取常见的时间序列和截面因子预测功率特征后,提出了一个基于因子预测功率动量、持续性和拥挤度测度的具有月度因子选择和倾斜的动态模型,并进行了回溯测试。从2013年1月到2020年3月,所提出的模型在扣除交易成本后的信息比为1.1152,与仅使用因子动量的静态模型和简单动态模型相比,这是一个很好的表现。这项研究为多因素模型在A股市场的应用提供了方向性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Dynamic Multifactor Model Application In China A-Shares
This article analyzes the factor investment landscape in China A-shares and explores a feasible solution to construct an adaptive multifactor model for stock selection aiming at stable outperformance over the benchmark CSI 300 Index. A diversified factor database, with more than 60 factors across five factor groups, is constructed for factor behavioral study and model preparation. After analyzing and extracting common time-series and cross-sectional factor predictive power characteristics, a dynamic model with monthly factor selection and tilting based on factor predictive power momentum, persistency, and crowdedness measures is proposed and backtested. From January 2013–March 2020, the proposed model has an information ratio of 1.1152 net of transaction costs—a strong outperformance versus the static models and the simple dynamic model using solely factor momentum. This research offers directional insights into multifactor model applications in the A-shares market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Investing
Journal of Investing BUSINESS, FINANCE-
CiteScore
1.10
自引率
16.70%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信