Imelda Alvionita Tarigan, I. P. Bayupati, G. A. A. Putri
{"title":"支持向量机与反向传播模型在巴厘岛外国游客数量预测中的比较","authors":"Imelda Alvionita Tarigan, I. P. Bayupati, G. A. A. Putri","doi":"10.14710/JTSISKOM.2021.13847","DOIUrl":null,"url":null,"abstract":"Tourism in Bali is one of the major industries which play an important role in developing the global economy in Indonesia. Good forecasting of tourist arrival, especially from foreign countries, is needed to predict the number of tourists based on past information to minimize the prediction error rate. This study compares the performance of SVM and Backpropagation to find the model with the best prediction algorithm using data from foreign tourists in Bali Province. The results of this study recommend the best forecasting using the SVM model with the radial kernel function. The best accuracy of the SVM model obtained the lowest error values of MSE 0.0009, MAE 0.0186, and MAPE 0.0276, compared to Backpropagation which obtained MSE 0.0170, MAE 0.1066, and MAPE 0.1539.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of support vector machine and backpropagation models in forecasting the number of foreign tourists in Bali province\",\"authors\":\"Imelda Alvionita Tarigan, I. P. Bayupati, G. A. A. Putri\",\"doi\":\"10.14710/JTSISKOM.2021.13847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tourism in Bali is one of the major industries which play an important role in developing the global economy in Indonesia. Good forecasting of tourist arrival, especially from foreign countries, is needed to predict the number of tourists based on past information to minimize the prediction error rate. This study compares the performance of SVM and Backpropagation to find the model with the best prediction algorithm using data from foreign tourists in Bali Province. The results of this study recommend the best forecasting using the SVM model with the radial kernel function. The best accuracy of the SVM model obtained the lowest error values of MSE 0.0009, MAE 0.0186, and MAPE 0.0276, compared to Backpropagation which obtained MSE 0.0170, MAE 0.1066, and MAPE 0.1539.\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/JTSISKOM.2021.13847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.2021.13847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
巴厘岛的旅游业是印尼发展全球经济的重要产业之一。需要对游客,特别是外国游客的到来进行良好的预测,根据过去的信息预测游客的数量,以尽量减少预测错误率。本研究利用巴厘岛省的外国游客数据,比较支持向量机和反向传播的性能,寻找具有最佳预测算法的模型。研究结果表明,径向核函数支持向量机模型的预测效果最好。与反向传播模型的误差值(MSE 0.0170, MAE 0.1066, MAPE 0.1539)相比,SVM模型的精度最高,误差值为MSE 0.0009, MAE 0.0186, MAPE 0.0276。
Comparison of support vector machine and backpropagation models in forecasting the number of foreign tourists in Bali province
Tourism in Bali is one of the major industries which play an important role in developing the global economy in Indonesia. Good forecasting of tourist arrival, especially from foreign countries, is needed to predict the number of tourists based on past information to minimize the prediction error rate. This study compares the performance of SVM and Backpropagation to find the model with the best prediction algorithm using data from foreign tourists in Bali Province. The results of this study recommend the best forecasting using the SVM model with the radial kernel function. The best accuracy of the SVM model obtained the lowest error values of MSE 0.0009, MAE 0.0186, and MAPE 0.0276, compared to Backpropagation which obtained MSE 0.0170, MAE 0.1066, and MAPE 0.1539.