R-L-Fuzzy双拓扑空间中的预写度

Q3 Mathematics
O. H. Khalil, K. E. El-Helow, A. Ghareeb
{"title":"R-L-Fuzzy双拓扑空间中的预写度","authors":"O. H. Khalil, K. E. El-Helow, A. Ghareeb","doi":"10.1155/2022/9210694","DOIUrl":null,"url":null,"abstract":"<jats:p>Based on the concept of pseudocomplement, we introduce a new representation of preopenness of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>L</mi>\n </math>\n </jats:inline-formula>-fuzzy sets in <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>R</mi>\n <mi>L</mi>\n </math>\n </jats:inline-formula>-fuzzy bitopological spaces. The concepts of pairwise <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>R</mi>\n <mi>L</mi>\n </math>\n </jats:inline-formula>-fuzzy precontinuous and pairwise <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>R</mi>\n <mi>L</mi>\n </math>\n </jats:inline-formula>-fuzzy preirresolute functions are extended and discussed based on the <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>i</mi>\n <mo>,</mo>\n <mi>j</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>R</mi>\n <mi>L</mi>\n </math>\n </jats:inline-formula>-preopen gradation. Further, we follow up with a study of pairwise <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>R</mi>\n <mi>L</mi>\n </math>\n </jats:inline-formula>-fuzzy precompactness in <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>R</mi>\n <mi>L</mi>\n </math>\n </jats:inline-formula>-fuzzy bitopological spaces of an <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>L</mi>\n </math>\n </jats:inline-formula>-fuzzy set. We find that our paper offers more general results since <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>R</mi>\n <mi>L</mi>\n </math>\n </jats:inline-formula>-fuzzy bitopology is a generalization of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mi>L</mi>\n </math>\n </jats:inline-formula>-bitopology, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mi>R</mi>\n <mi>L</mi>\n </math>\n </jats:inline-formula>-bitopology, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mi>L</mi>\n </math>\n </jats:inline-formula>-fuzzy topology.</jats:p>","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preopenness Degree in \\n R\\n L\\n -Fuzzy Bitopological Spaces\",\"authors\":\"O. H. Khalil, K. E. El-Helow, A. Ghareeb\",\"doi\":\"10.1155/2022/9210694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>Based on the concept of pseudocomplement, we introduce a new representation of preopenness of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>L</mi>\\n </math>\\n </jats:inline-formula>-fuzzy sets in <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>R</mi>\\n <mi>L</mi>\\n </math>\\n </jats:inline-formula>-fuzzy bitopological spaces. The concepts of pairwise <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>R</mi>\\n <mi>L</mi>\\n </math>\\n </jats:inline-formula>-fuzzy precontinuous and pairwise <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>R</mi>\\n <mi>L</mi>\\n </math>\\n </jats:inline-formula>-fuzzy preirresolute functions are extended and discussed based on the <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>i</mi>\\n <mo>,</mo>\\n <mi>j</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>-<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>R</mi>\\n <mi>L</mi>\\n </math>\\n </jats:inline-formula>-preopen gradation. Further, we follow up with a study of pairwise <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mi>R</mi>\\n <mi>L</mi>\\n </math>\\n </jats:inline-formula>-fuzzy precompactness in <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mi>R</mi>\\n <mi>L</mi>\\n </math>\\n </jats:inline-formula>-fuzzy bitopological spaces of an <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mi>L</mi>\\n </math>\\n </jats:inline-formula>-fuzzy set. We find that our paper offers more general results since <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <mi>R</mi>\\n <mi>L</mi>\\n </math>\\n </jats:inline-formula>-fuzzy bitopology is a generalization of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\">\\n <mi>L</mi>\\n </math>\\n </jats:inline-formula>-bitopology, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M13\\\">\\n <mi>R</mi>\\n <mi>L</mi>\\n </math>\\n </jats:inline-formula>-bitopology, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M14\\\">\\n <mi>L</mi>\\n </math>\\n </jats:inline-formula>-fuzzy topology.</jats:p>\",\"PeriodicalId\":7061,\"journal\":{\"name\":\"Abstract and Applied Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/9210694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9210694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在伪完备概念的基础上,我们引入了一种新的R-L-模糊双拓扑空间中的L-模糊集的前置性表示。在对R—L—模糊预连续函数和R—L-模糊预解函数的基础上,推广和讨论了它们的概念i,j-R L-打开前的分级。进一步的我们接着研究了L的R-L-fuzzy双拓扑空间中的成对R-L-fuzy预运算-模糊集。我们发现,由于R-L-模糊双拓扑是L-双拓扑的推广,R—L—双拓扑和L—模糊拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preopenness Degree in R L -Fuzzy Bitopological Spaces
Based on the concept of pseudocomplement, we introduce a new representation of preopenness of L -fuzzy sets in R L -fuzzy bitopological spaces. The concepts of pairwise R L -fuzzy precontinuous and pairwise R L -fuzzy preirresolute functions are extended and discussed based on the i , j - R L -preopen gradation. Further, we follow up with a study of pairwise R L -fuzzy precompactness in R L -fuzzy bitopological spaces of an L -fuzzy set. We find that our paper offers more general results since R L -fuzzy bitopology is a generalization of L -bitopology, R L -bitopology, and L -fuzzy topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
36
审稿时长
3.5 months
期刊介绍: Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信