半素环和Banach代数上的(ξ,φ)-导子

Q3 Mathematics
B. Wani
{"title":"半素环和Banach代数上的(ξ,φ)-导子","authors":"B. Wani","doi":"10.2478/cm-2021-0013","DOIUrl":null,"url":null,"abstract":"Abstract Let ℛ be a semiprime ring with unity e and ϕ, φ be automorphisms of ℛ. In this paper it is shown that if ℛ satisfies 2𝒟(xn)=𝒟(xn-1)φ(x)+ϕ(xn-1)𝒟(x)+𝒟(x)φ(xn-1)+ϕ(x)𝒟(xn-1)2\\mathcal{D}\\left( {{x^n}} \\right) = \\mathcal{D}\\left( {{x^{n - 1}}} \\right)\\phi \\left( x \\right) + \\varphi \\left( {{x^{n - 1}}} \\right)\\mathcal{D}\\left( x \\right) + \\mathcal{D}\\left( x \\right)\\phi \\left( {{x^{n - 1}}} \\right) + \\varphi \\left( x \\right)\\mathcal{D}\\left( {{x^{n - 1}}} \\right) for all x ∈ ℛ and some fixed integer n ≥ 2, then 𝒟 is an (ϕ, φ)-derivation. Moreover, this result makes it possible to prove that if ℛ admits an additive mappings 𝒟, 𝒢 : ℛ → ℛ satisfying the relations 2𝒟(xn)=𝒟(xn-1)φ(x)+ϕ(xn-1)𝒟(x)+𝒟(x)φ(xn-1)+ϕ(x)𝒟(xn-1)2\\mathcal{D}\\left( {{x^n}} \\right) = \\mathcal{D}\\left( {{x^{n - 1}}} \\right)\\phi \\left( x \\right) + \\varphi \\left( {{x^{n - 1}}} \\right)\\mathcal{D}\\left( x \\right) + \\mathcal{D}\\left( x \\right)\\phi \\left( {{x^{n - 1}}} \\right) + \\varphi \\left( x \\right)\\mathcal{D}\\left( {{x^{n - 1}}} \\right)2𝒢(xn)=𝒢(xn-1)φ(x)+ϕ(xn-1)D(x)+𝒟(x)φ(xn-1)+ϕ(x)𝒟(xn-1),2\\mathcal{G}\\left( {{x^n}} \\right) = \\mathcal{G}\\left( {{x^{n - 1}}} \\right)\\phi \\left( x \\right) + \\varphi \\left( {{x^{n - 1}}} \\right)\\mathcal{D}\\left( x \\right) + \\mathcal{D}\\left( x \\right)\\phi \\left( {{x^{n - 1}}} \\right) + \\varphi \\left( x \\right)\\mathcal{D}\\left( {{x^{n - 1}}} \\right), for all x ∈ ℛ and some fixed integer n ≥ 2, then 𝒟 and 𝒢 are (ϕ, φ)--derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":"29 1","pages":"371 - 383"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(ϕ, φ)-derivations on semiprime rings and Banach algebras\",\"authors\":\"B. Wani\",\"doi\":\"10.2478/cm-2021-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let ℛ be a semiprime ring with unity e and ϕ, φ be automorphisms of ℛ. In this paper it is shown that if ℛ satisfies 2𝒟(xn)=𝒟(xn-1)φ(x)+ϕ(xn-1)𝒟(x)+𝒟(x)φ(xn-1)+ϕ(x)𝒟(xn-1)2\\\\mathcal{D}\\\\left( {{x^n}} \\\\right) = \\\\mathcal{D}\\\\left( {{x^{n - 1}}} \\\\right)\\\\phi \\\\left( x \\\\right) + \\\\varphi \\\\left( {{x^{n - 1}}} \\\\right)\\\\mathcal{D}\\\\left( x \\\\right) + \\\\mathcal{D}\\\\left( x \\\\right)\\\\phi \\\\left( {{x^{n - 1}}} \\\\right) + \\\\varphi \\\\left( x \\\\right)\\\\mathcal{D}\\\\left( {{x^{n - 1}}} \\\\right) for all x ∈ ℛ and some fixed integer n ≥ 2, then 𝒟 is an (ϕ, φ)-derivation. Moreover, this result makes it possible to prove that if ℛ admits an additive mappings 𝒟, 𝒢 : ℛ → ℛ satisfying the relations 2𝒟(xn)=𝒟(xn-1)φ(x)+ϕ(xn-1)𝒟(x)+𝒟(x)φ(xn-1)+ϕ(x)𝒟(xn-1)2\\\\mathcal{D}\\\\left( {{x^n}} \\\\right) = \\\\mathcal{D}\\\\left( {{x^{n - 1}}} \\\\right)\\\\phi \\\\left( x \\\\right) + \\\\varphi \\\\left( {{x^{n - 1}}} \\\\right)\\\\mathcal{D}\\\\left( x \\\\right) + \\\\mathcal{D}\\\\left( x \\\\right)\\\\phi \\\\left( {{x^{n - 1}}} \\\\right) + \\\\varphi \\\\left( x \\\\right)\\\\mathcal{D}\\\\left( {{x^{n - 1}}} \\\\right)2𝒢(xn)=𝒢(xn-1)φ(x)+ϕ(xn-1)D(x)+𝒟(x)φ(xn-1)+ϕ(x)𝒟(xn-1),2\\\\mathcal{G}\\\\left( {{x^n}} \\\\right) = \\\\mathcal{G}\\\\left( {{x^{n - 1}}} \\\\right)\\\\phi \\\\left( x \\\\right) + \\\\varphi \\\\left( {{x^{n - 1}}} \\\\right)\\\\mathcal{D}\\\\left( x \\\\right) + \\\\mathcal{D}\\\\left( x \\\\right)\\\\phi \\\\left( {{x^{n - 1}}} \\\\right) + \\\\varphi \\\\left( x \\\\right)\\\\mathcal{D}\\\\left( {{x^{n - 1}}} \\\\right), for all x ∈ ℛ and some fixed integer n ≥ 2, then 𝒟 and 𝒢 are (ϕ, φ)--derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":\"29 1\",\"pages\":\"371 - 383\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cm-2021-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cm-2021-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要:设φ是一个半素环,φ是φ的自同构。在本文中,证明了如果∈满足2 (xn)= (xn-1)φ(x)+ (xn-1) (x)+ (x) (xn-1) (xn-1)2\mathcal{D}\left( {{x^n}} \right) = \mathcal{D}\left( {{x^{N - 1}}} \right)\phi \left(x) \right) + \varphi \left( {{x^{N - 1}}} \right)\mathcal{D}\left(x) \right) + \mathcal{D}\left(x) \right)\phi \left( {{x^{N - 1}}} \right) + \varphi \left(x) \right)\mathcal{D}\left( {{x^{N - 1}}} \right)对于所有x∈∈,且某个固定整数n≥2,则∠是一个(φ, φ)-导数。此外,该结果使得有可能证明如果π允许一个可加性映射,𝒢:π→π满足关系2¾(xn)=¾(xn-1)φ(x)+ φ(xn-1)¾(x)+¾(x)φ(xn-1)¾(xn-1)2\mathcal{D}\left( {{x^n}} \right) = \mathcal{D}\left( {{x^{N - 1}}} \right)\phi \left(x) \right) + \varphi \left( {{x^{N - 1}}} \right)\mathcal{D}\left(x) \right) + \mathcal{D}\left(x) \right)\phi \left( {{x^{N - 1}}} \right) + \varphi \left(x) \right)\mathcal{D}\left( {{x^{N - 1}}} \right)2𝒢(xn)=𝒢(xn-1)φ(x)+ϕ(xn-1)D(x)+ (x)φ(xn-1)+ (x) (xn-1)\mathcal{G}\left( {{x^n}} \right) = \mathcal{G}\left( {{x^{N - 1}}} \right)\phi \left(x) \right) + \varphi \left( {{x^{N - 1}}} \right)\mathcal{D}\left(x) \right) + \mathcal{D}\left(x) \right)\phi \left( {{x^{N - 1}}} \right) + \varphi \left(x) \right)\mathcal{D}\left( {{x^{N - 1}}} \right),对于所有x∈φ和某个固定整数n≥2,则和𝒢是(φ, φ)——在某种扭转约束下的导数。最后,我们将这些纯环理论结果应用于半简单Banach代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(ϕ, φ)-derivations on semiprime rings and Banach algebras
Abstract Let ℛ be a semiprime ring with unity e and ϕ, φ be automorphisms of ℛ. In this paper it is shown that if ℛ satisfies 2𝒟(xn)=𝒟(xn-1)φ(x)+ϕ(xn-1)𝒟(x)+𝒟(x)φ(xn-1)+ϕ(x)𝒟(xn-1)2\mathcal{D}\left( {{x^n}} \right) = \mathcal{D}\left( {{x^{n - 1}}} \right)\phi \left( x \right) + \varphi \left( {{x^{n - 1}}} \right)\mathcal{D}\left( x \right) + \mathcal{D}\left( x \right)\phi \left( {{x^{n - 1}}} \right) + \varphi \left( x \right)\mathcal{D}\left( {{x^{n - 1}}} \right) for all x ∈ ℛ and some fixed integer n ≥ 2, then 𝒟 is an (ϕ, φ)-derivation. Moreover, this result makes it possible to prove that if ℛ admits an additive mappings 𝒟, 𝒢 : ℛ → ℛ satisfying the relations 2𝒟(xn)=𝒟(xn-1)φ(x)+ϕ(xn-1)𝒟(x)+𝒟(x)φ(xn-1)+ϕ(x)𝒟(xn-1)2\mathcal{D}\left( {{x^n}} \right) = \mathcal{D}\left( {{x^{n - 1}}} \right)\phi \left( x \right) + \varphi \left( {{x^{n - 1}}} \right)\mathcal{D}\left( x \right) + \mathcal{D}\left( x \right)\phi \left( {{x^{n - 1}}} \right) + \varphi \left( x \right)\mathcal{D}\left( {{x^{n - 1}}} \right)2𝒢(xn)=𝒢(xn-1)φ(x)+ϕ(xn-1)D(x)+𝒟(x)φ(xn-1)+ϕ(x)𝒟(xn-1),2\mathcal{G}\left( {{x^n}} \right) = \mathcal{G}\left( {{x^{n - 1}}} \right)\phi \left( x \right) + \varphi \left( {{x^{n - 1}}} \right)\mathcal{D}\left( x \right) + \mathcal{D}\left( x \right)\phi \left( {{x^{n - 1}}} \right) + \varphi \left( x \right)\mathcal{D}\left( {{x^{n - 1}}} \right), for all x ∈ ℛ and some fixed integer n ≥ 2, then 𝒟 and 𝒢 are (ϕ, φ)--derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信